Abstract:
Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Abstract:
A system and method are provided for in-line processes of blending butane into gasoline streams, and for blending butane into a gasoline stream at any point along a petroleum pipeline. The invention additionally provides a method for measuring the vapor pressure and vapor to liquid ratio of the gasoline, both upstream and downstream of the blending operation, as well as the sulfur content of the butane entering the blending operation. The blending operation can be controlled to ensure that the blended gasoline meets EPA requirements for vapor pressure and sulfur content of gasoline. The invention further provides a method for accessing and monitoring the operation off-site.
Abstract:
A liquid fuel composition containing a biofuel component, produced from a fraction of one or more cracking products produced by catalytic cracking of a biomass source. The liquid fuel composition contains in the range of 0.5 to 20 vol. % of C4-C8-olefins, which C4-C8-olefins contain in the range from equal to or more than 0.02 wt % to equal to or less than 100 wt % of bio-carbon, based on the total weight of carbon present in the C4-C8-olefins.
Abstract:
Disclosed herein are methods and systems for upgrading (for example, removing heteroatoms, metals, or metalloids) an oil composition derived or extracted from a biomass. The upgraded oil composition can be used to make a desired product, for example, a fuel product.
Abstract:
An unleaded fuel composition comprising: a combination of alkylated benzenes comprising alkyl groups having from 1 to 4 carbon atoms; 5 vol. % or more of one or more aromatic amines; and, an isoparaffin composition selected from the group consisting of alkylate, a combination of isoparaffins having a total number of carbon atoms of 11 or less, and combinations thereof.
Abstract:
A system or method for producing gasoline from natural gas can be particularly useful in a location which is a natural gas-producing region, but in which it is difficult to obtain water suitable for use in steam reforming, for example, in a desert or at sea. A system for producing gasoline from natural gas via methanol according to the present invention includes: a steam reformer 20 for steam-reforming natural gas to produce reformed gas; a methanol synthesis apparatus 30 for synthesizing methanol from the reformed gas; and a gasoline synthesis apparatus 50 for synthesizing gasoline from the methanol, water being produced in the gasoline synthesis apparatus 50 is reused for the steam reforming in the steam reformer 20.
Abstract:
We provide an extracted conjunct polymer naphtha (45), comprising a hydrogenated conjunct polymer naphtha, from a used ionic liquid catalyst, having a final boiling point less than 246° C. (475° F.), a Bromine Number of 5 or less, and at least 30 wt % naphthenes. We also provide a blended alkylate gasoline (97) comprising the extracted conjunct polymer naphtha (45), and integrated alkylation processes to make the extracted conjunct polymer naphtha (45) and the blended alkylate gasoline (97). We also provide a method to analyze alkylate products, by determining an amount of methylcyclohexane in the alkylate products (80).
Abstract:
Gasoline fuel and method of making and using it. The fuel comprises from 5 to 20 vol.-% paraffinic hydrocarbons originating from biological oils, fats, or derivatives or combinations thereof. Further, it comprises oxygenates, such as ethanol present in a concentration of about 5 to 15 vol.-%; or iso-butanol present in a concentration of 5 to 20 vol.-%, preferably about 10 to 17 vol.-%; or ETBE present in a concentration of 7 to 25 vol.-%, preferably about 15 to 22 vol.-%. The bioenergy content of the gasoline is at least 14 Energy equivalent percentage (Eeqv-%) calculated based on the heating values given in the European Renewable Energy Directive 2009/28/EC. By means of the invention, fuels with a high bioenergy content are provided which can be used in conventional gasoline-fuelled automotive engines.
Abstract:
Methods are provided for producing a jet fuel composition from a feedstock comprising a natural oil. The methods comprise reacting the feedstock with oxygen under conditions sufficient to form an oxygen-cleaved product. The methods further comprise hydrogenating the oxygen-cleaved product under conditions sufficient to form a jet fuel composition.
Abstract:
A fuel composition for use in gasoline engines which has excellent acceleration characteristics at high speeds and excellent fuel consumption. The fuel composition of this invention for use in gasoline engines satisfies the conditions: (1) the research octane number is not less than 90; (2) the density is in the range of from 0.740 to 0.760 g/cm3; (3) the distillation temperature at 50 vol % distilled is in the range of from 95 to 105 ° C., the distillation temperature at 90 vol % distilled is in the range of from 160 to 180° C., and the distillation end point is not more than 220° C.; and (4) the content of aromatic hydrocarbons with 9 or more carbon atoms is in the range of from 12 to 20% by volume, and the indane content is in the range of from 1.5 to 3.0% by volume.