Abstract:
Microplate reader (21) with a computer for controlling the components of said microplate reader (21), comprising a light source (15) for emitting light for irradiating samples (22) or transmitting light through samples (22), and a filter slide (1) situated in the excitation or detection beam path. The microplate reader (21) in accordance with the invention is characterized in that said filter slide (1) comprises an electronic memory (4) for recording and/or retrieving filter-specific data, with said filter-specific data comprising the number and intensity of the light flashes impinging upon a certain filter (2) of said filter slide (1) and/or the intensity and duration of all exposures performed, and that said filter slide (1) comprises a contact point (5,7) jointly with the microplate reader (21) for transmitting such filter-specific data from the computer to the electronic memory (4) of the filter slide (1) and for retrieving such filter-specific data with the computer. According to the method in accordance with the invention for acquiring filter-specific data in a filter slide (1) of such a microplate reader (21), filter-specific data which comprise the number and intensity of the light flashes impinging upon a specific filter (2) of said filter slide (1) and/or the intensity and duration of all exposures performed are transmitted by the computer via a contact point common to said filter slide (1) and the microplate reader (21) to an electronic memory (4) of said filter slide (1) and/or are retrieved with the computer from said electronic memory (4).
Abstract:
In a calibration method for a surface texture measuring instrument which measures a surface of a workpiece and includes an arm that is supported to be swingable around a base point thereof and is provided with a contact point at an end for scanning the workpiece surface, the calibration method includes a measurement step for measuring a calibration gauge of which cross section contains a part of a substantially perfect circle, an assignment step for assigning the detection results, which are obtained in the measurement step, in an evaluation formula based on a circle equation in which the center coordinates of the calibration gauge are (xc, zc) and the radius is “r”, and a calibration step for calibrating each parameter based on the evaluation formula obtained in the assignment step.
Abstract:
A multi-stage control for an auto-darkening lens includes a first detector to detect initiation of welding and a second detector to detect continuation of welding after welding has been initiated. The first detector has relatively low sensitivity and fast response time; and the second detector has relatively high sensitivity that can be altered as may be necessary, relatively slow response time to allow opportunity to determine whether welding is continuing as inputs indicative of welding, and adaptive filtering to filter ambient effects and the like from such inputs to avoid false detection of welding. A method of enhancing operation of an auto-darkening lens control that has a detector and associated circuitry to detect initiation of welding substantially independently of time based filtering and to maintain detecting of welding using time based discrimination, comprising coupling control signals and power to an auto-darkening lens via a substantially unimpeded path from a detector to the auto-darkening lens.
Abstract:
A standard light source for single photon count apparatus, comprising: a housing; a light emitting diode; a light-shielding plate, disposed above said light emitting diode, for weakening the light intensity emitted by the light emitting diode; and a light-shielding filler for blocking the light emitted by the light emitting diode propagating downward, said light shielding filler, said light shielding plate and said LED are sealed in said housing integrally.
Abstract:
An apparatus and related method for optical calibration of spectrophotometers is described. The apparatus is a calibration plate including one or more cuvettes filled with solutions of interest. The cuvettes are sealed to prevent evaporation. The cuvettes also possess a compressible component to allow for expansion of the solution and a bubble control apparatus to ensure that the compressible component does not intersect the beam path. A piece of neutral density glass is optionally included in the apparatus to track optical changes of the solutions over time.
Abstract:
A method of calibration of magnification of a microscope with the use of a diffraction grating has the steps of determining a mean period of a diffraction grating by irradiating the diffraction grating with an electromagnetic radiation having a known wavelength and analyzing a resulting diffraction pattern, determining a scatter of individual values of a period of the diffraction grating by multiple measurements of periods of the diffraction grating by a microscope in pixels in one area in a microscope field of view, and calculating a mean value of the period and the scatter based on the measurements, determining a sufficient number of measurements of the period for providing an accepted statistic error of a magnification of the microscope, performing measurements corresponding to the determined acceptable number of measurements, of individual values of the period in pixels in a plurality of portions of the diffraction grating, calculating a general mean value of the period in pixels based on the immediately preceding step, and finally calculating a parameter corresponding to the magnification of the microscope based on the determined mean value of the period of the diffraction grating in the microscope image and the calculating of the general mean value of the period in pixels.
Abstract:
The invention is directed to a device for calibrating an optical detection channel for a two-dimensional, spatially dependent measurement of fluorescent or luminescent radiation in multi-specimen carriers. The invention provides a system for calibrating an optical detection channel for a two-dimensional, spatially dependent measurement of fluorescent or luminescent radiation in multi-specimen carriers permitting a highly accurate calibration of the spatial sensitivity distribution of the sensor array in the detection channel. The invention provides a plate-shaped housing, a luminescent foil inside the housing which is arranged parallel to the window so as to cover its surface, a power source and control units which are provided in the housing for controlling the luminescent foil, so that the luminescent foil can be controlled for homogeneous emission of luminescent light through the window of the housing in different intensity levels.
Abstract:
An optical measurement device calibration tool includes an optical probe suitable for calibrating various optical imaging devices, for example, low coherence reflectometers and optical coherence tomography devices. In a preferred embodiment the calibration tool comprises a container containing a calibration substance with stable optical scattering and absorption properties. The calibration substance includes a gel, paste or grease substance and is covered a protective seal, which is at least partially transparent providing optical contact between the optical probe and the calibration substance. The protective seal is covered with a viscous complementary material. Another protective seal made at least partially removable is placed above the viscous complementary material and may serve as a cover for the container. The calibration tool maintains the advantages of calibration tools using liquids and solid states as calibration substance and is more cost-effective and more convenient for calibrating optical measuring devices such as in medical applications.
Abstract:
An optical sensor device includes a luminescence element for emitting ray toward a windshield of a vehicle, and a photoreception element for detecting ray projected thereon. A sensor case is provided for accommodating the photoreception element and the luminescence element, which is activated by a control unit according to a predetermined luminescence pattern. The control unit switches an output of the photoreception element as an output of a rain sensor or an illumination sensor, based on the predetermined luminescence pattern of the luminescence element. Accordingly, the rain sensor and the illumination sensor can share the same photoreception element, thus small-sizing the optical sensor device.
Abstract:
A method of calibration of magnification of a microscope with the use of a diffraction grating has the steps of determining a mean period of a diffraction grating by irradiating the diffraction grating with an electromagnetic radiation having a known wavelength and analyzing a resulting diffraction pattern, determining a scatter of individual values of a period of the diffraction grating by multiple measurements of periods of the diffraction grating by a microscope in pixels in one area in a microscope field of view, and calculating a mean value of the period and the scatter based on the measurements, determining a sufficient number of measurements of the period for providing an accepted statistic error of a magnification of the microscope, performing measurements corresponding to the determined acceptable number of measurements, of individual values of the period in pixels in a plurality of portions of the diffraction grating, calculating a general mean value of the period in pixels based on the immediately preceding step, and finally calculating a parameter corresponding to the magnification of the microscope based on the determined mean value of the period of the diffraction grating in the microscope image and the calculating of the general mean value of the period in pixels.