Abstract:
A spectral imaging device is configured to capture color images synchronized with controlled illumination from different color light emitting diodes. A processor in the device applies a coupling factor to sampled color images to convert sampled pixels into spectral channels corresponding to LED color and color filter. Multi-spectral spectricity vectors produced at pixel locations are used along with spatial information to classify objects, such as produce items.
Abstract:
Methods and arrangements involving portable user devices such smartphones and wearable electronic devices are disclosed, as well as other devices and sensors distributed within an ambient environment. Some arrangements enable a user to perform an object recognition process in a computationally- and time-efficient manner. Other arrangements enable users and other entities to, either individually or cooperatively, register or enroll physical objects into one or more object registries on which an object recognition process can be performed. Still other arrangements enable users and other entities to, either individually or cooperatively, associate registered or enrolled objects with one or more items of metadata. A great variety of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. A great variety of other features and arrangements are also detailed.
Abstract:
Methods and arrangements involving portable user devices such smartphones and wearable electronic devices are disclosed, as well as other devices and sensors distributed within an ambient environment. Some arrangements enable a user to perform an object recognition process in a computationally- and time-efficient manner. Other arrangements enable users and other entities to, either individually or cooperatively, register or enroll physical objects into one or more object registries on which an object recognition process can be performed. Still other arrangements enable users and other entities to, either individually or cooperatively, associate registered or enrolled objects with one or more items of metadata. A great variety of other features and arrangements are also detailed.
Abstract:
A phase deviation method determines an offset between a reference and suspect signal by analyzing a phase deviation surface created by computing a deviation metric for phase shift and then analyzing a surface formed from the deviation metrics for an array of offsets. The phase deviation method analyzes the deviation surface to determine an offset that minimizes phase deviation. This method is applied at increasing levels of detail to refine the determination of the offset.
Abstract:
Cell phones and other portable devices are equipped with a variety of technologies by which existing functionality is improved, and new functionality is provided. Some aspects relate to imaging architectures, in which a cell phone's image sensor is one in a chain of stages that successively act on instructions/data, to capture and later process imagery. Other aspects relate to distribution of processing tasks between the device and remote resources (“the cloud”). Elemental image processing, such as filtering and edge detection—and even some simpler template matching operations—may be performed on the cell phone. Other operations are referred out to remote service providers. The remote service providers can be identified using techniques such as a reverse auction, though which they compete for processing tasks. Other aspects of the disclosed technologies relate to visual search capabilities, and determining appropriate actions responsive to different image inputs. Still others concern metadata generation, processing, and representation. A great number of other features and arrangements are also detailed.
Abstract:
Methods and arrangements involving portable user devices such smartphones and wearable electronic devices are disclosed, as well as other devices and sensors distributed within an ambient environment. Some arrangements enable a user to perform an object recognition process in a computationally- and time-efficient manner. Other arrangements enable users and other entities to, either individually or cooperatively, register or enroll physical objects into one or more object registries on which an object recognition process can be performed. Still other arrangements enable users and other entities to, either individually or cooperatively, associate registered or enrolled objects with one or more items of metadata. A great variety of other features and arrangements are also detailed.
Abstract:
Audio and or video data is structurally and persistently associated with auxiliary sensor data (e.g., relating to acceleration, orientation or tilt) through use of a unitary data object, such as a modified MPEG file or data stream. In this form, different rendering devices can employ co-conveyed sensor data to alter the audio or video content. Such use of the sensor data may be personalized to different users, e.g., through preference data. For example, accelerometer data can be associated with video data, allowing some users to view a shake-stabilized version of a video, and other users to view the video with such motion artifacts undisturbed. In like fashion, camera parameters, such as focal plane distance, can be co-conveyed with audio/video content—allowing the volume to be diminished (or not, again depending on user preference) when a camera captures audio/video from a distant subject. Some arrangements employ multiple image sensors and/or multiple audio sensors—each also collecting auxiliary data. A great number of other features and arrangements are also detailed.
Abstract:
In an illustrative embodiment, the free space attenuation of illumination with distance, according to a square law relationship, is used to estimate the distance between a light source and two or more different areas on the surface of a product package. By reference to these distance estimates, the angular pose of the product package is determined. Plural frames of imagery, captured both with and without illumination from the light source, can be processed to mitigate the effects of ambient lighting.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. A great variety of other features and arrangements are also detailed.