Abstract:
A semiconductor unit includes a chip having left and right columns of contacts at its front surface. Interconnect pads are provided overlying the front surface of the chip and connected to at least some of the contacts as, for example, by traces or by arrangements including wire bonds. The interconnect pads alone, or the interconnect pads and some of the contacts, provide an array of external connection elements. This array includes some reversal pairs of external connection elements in which the external connection element connected to or incorporating the right contact is disposed to the left of the external connection element incorporating or connected to the left contact. Such a unit may be used in a multi-chip package. The reversed connections simplify routing, particularly where corresponding contacts of two chips are to be connected to common terminals on the package substrate.
Abstract:
A microelectronic assembly 5 can include first and second microelectronic packages 10a, 10b mounted to respective first and second opposed surfaces 61, 62 of a circuit panel 60. Each microelectronic package 10a, 10b can include a substrate 20 having first and second apertures 26a, 26b extending between first and second surfaces 21, 22 thereof, first and second microelectronic elements 30a, 30b each having a surface 31 facing the first surface of the substrate and a plurality of contacts 35 exposed at the surface of the respective microelectronic element and aligned with at least one of the apertures, and a plurality of terminals 25a exposed at the second surface in a central region 23 thereof. The apertures 26a, 26b of each substrate 20 can have first and second parallel axes 29a, 29b extending in directions of the lengths of the respective apertures. The central region 23 of the second surface 22 of each substrate 20 can be disposed between the first and second axes 29a, 29b of the respective substrate 20.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces, at least two pairs of microelectronic elements, and a plurality of terminals exposed at the second surface. Each pair of microelectronic elements can include an upper microelectronic element and a lower microelectronic element. The pairs of microelectronic elements can be fully spaced apart from one another in a horizontal direction parallel to the first surface of the substrate. Each lower microelectronic element can have a front surface facing the first surface of the substrate and a plurality of contacts at the front surface. A surface of each of the upper microelectronic elements can at least partially overlie a rear surface of the lower microelectronic element in its pair. The microelectronic package can also include electrical connections extending from at least some of the contacts of each lower microelectronic element to at least some of the terminals.
Abstract:
A semiconductor unit includes a chip having left and right columns of contacts at its front surface. Interconnect pads are provided overlying the front surface of the chip and connected to at least some of the contacts as, for example, by traces or by arrangements including wire bonds. The interconnect pads alone, or the interconnect pads and some of the contacts, provide an array of external connection elements. This array includes some reversal pairs of external connection elements in which the external connection element connected to or incorporating the right contact is disposed to the left of the external connection element incorporating or connected to the left contact. Such a unit may be used in a multi-chip. The reversed connections simplify routing, particularly where corresponding contacts of two chips are to be connected to common terminals on the package substrate.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces extending in first and second transverse directions and an opening extending between the first and second surfaces and defining first and second distinct parts each elongated along a common axis extending in the first direction, first and second microelectronic elements each having a front surface facing the first surface of the substrate and a column of contacts at the respective front surface, a plurality of terminals exposed at the second surface, and first and second electrical connections aligned with the respective first and second parts of the opening and extending from at least some of the contacts of the respective first and second microelectronic elements to at least some of the terminals. The column of contacts of the first and second microelectronic elements can be aligned with the respective first and second parts of the opening.
Abstract:
A circuit panel can include contacts exposed at a connection site of a major surface thereof and configured to be coupled to terminals of a microelectronic package. The connection site can define a peripheral boundary on the major surface surrounding a group of the contacts that is configured to be coupled to a single microelectronic package. The group of contacts can include first, second, third, and fourth sets of first contacts. Signal assignments of the first and third sets of first contacts can be symmetric about a theoretical plane normal to the major surface with signal assignments of the respective second and fourth sets of first contacts. Each of the sets of first contacts can be configured to carry identical signals. Each of the sets of first contacts can be configured to carry address information sufficient to specify a location within a memory storage array of the microelectronic package.
Abstract:
A microelectronic package includes a microelectronic element having memory storage array function overlying a first surface of a substrate, the microelectronic element having a plurality of contacts aligned with an aperture in the substrate. First terminals which are configured to carry all address signals transferred to the package can be exposed within a first region of a second substrate surface, the first region disposed between the aperture and a peripheral edge of the substrate. The first terminals may be configured to carry all command signals, bank address signals and command signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe.
Abstract:
Dies-on-package devices and methods therefor are disclosed. In a dies-on-package device, a first IC die is surface mount coupled to an upper surface of a package substrate. Conductive lines are coupled to the upper surface of the package substrate in a fan-out region with respect to the first IC die. A molding layer is formed over the upper surface of the package substrate, around sidewall surfaces of the first IC die, and around bases and shafts of the conductive lines. A plurality of second IC dies is located at a same level above an upper surface of the molding layer respectively surface mount coupled to sets of upper portions of the conductive lines. The plurality of second IC dies are respectively coupled to the sets of the conductive lines in middle third portions respectively of the plurality of second IC dies for corresponding fan-in regions thereof.
Abstract:
A microelectronic assembly including first and second laminated microelectronic elements is provided. A patterned bonding layer is disposed on a face of each of the first and second laminated microelectronic elements. The patterned bonding layers are mechanically and electrically bonded to form the microelectronic assembly.
Abstract:
A microelectronic assembly can be made by forming a redistribution structure supported on a carrier, the structure including two or more layers of deposited dielectric material and two or more electrically conductive layers and including conductive features such as pads and traces electrically interconnected by vias. Electrical connectors may project above a second surface of the structure opposite an interconnection surface of the redistribution structure adjacent to the carrier. A microelectronic element may be attached and electrically connected with conductive features at the second surface, and a dielectric encapsulation can be formed contacting the second surface and surfaces of the microelectronic element. Electrically conductive features at the interconnection surface can be configured for connection with corresponding features of a first external component, and the electrical connectors can be configured for connection with corresponding features of a second external component.