Abstract:
A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light. At least one of the frequency mixing, frequency conversion or harmonic generation utilizes an annealed, deuterium-treated or hydrogen-treated CLBO crystal.
Abstract:
A scanning electron microscope incorporates a multi-pixel solid-state electron detector. The multi-pixel solid-state detector may detect back-scattered and/or secondary electrons. The multi-pixel solid-state detector may incorporate analog-to-digital converters and other circuits. The multi-pixel solid state detector may be capable of approximately determining the energy of incident electrons and/or may contain circuits for processing or analyzing the electron signals. The multi-pixel solid state detector is suitable for high-speed operation such as at a speed of about 100 MHz or higher. The scanning electron microscope may be used for reviewing, inspecting or measuring a sample such as unpatterned semiconductor wafer, a patterned semiconductor wafer, a reticle or a photomask. A method of reviewing or inspecting a sample is also described.
Abstract:
A system for inspecting a sample including a detector, either a photomultiplier tube or an electron-bombarded image sensor, that is positioned to receive light from the sample. The detector includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. The semiconductor photocathode includes silicon, and further includes a pure boron coating on at least one surface.
Abstract:
Improved inspection systems utilize laser systems and associated techniques to generate an ultra-violet (UV) wavelength of approximately 193.368 nm from a fundamental vacuum wavelength near 1063.5 nm. Preferred embodiments separate out an unconsumed portion of an input wavelength to at least one stage and redirect that unconsumed portion for use in another stage. The improved laser systems and associated techniques result in less expensive, longer life lasers than those currently being used in the industry. These laser systems can be constructed with readily-available, relatively inexpensive components.
Abstract:
An electron-bombarded detector for detecting low light signals includes a vacuum tube structure defining a cylindrical vacuum tube chamber, a photocathode disposed at a first end of the vacuum tube chamber, a sensor disposed at a second end of the vacuum tube chamber, ring electrodes disposed in the vacuum tube chamber for generating an electric field that accelerates emitted photoelectrons toward the sensor, and a magnetic field generator configured to generate a symmetric magnetic field that applies a focusing lens effect on the photoelectrons. The ring electrodes and magnetic field generator are operating using one of a reduced distance focusing approach and an acceleration/deceleration approach such that the photoelectrons have a landing energy below 2 keV. The use of reflective mode photocathodes is enabled using either multi-pole deflector coils, or ring electrodes formed by segmented circular electrode structures. Large angle deflections are achieved using magnetic or electrostatic deflectors.
Abstract:
Determination of one or more optical characteristics of a structure of a semiconductor wafer includes measuring one or more optical signals from one or more structures of a sample, determining a background optical field associated with a reference structure having a selected set of nominal characteristics based on the one or more structures, determining a correction optical field suitable for at least partially correcting the background field, wherein a difference between the measured one or more optical signals and a signal associated with a sum of the correction optical field and the background optical field is below a selected tolerance level, and extracting one or more characteristics associated with the one or more structures utilizing the correction optical field.
Abstract:
A method of inspecting a sample at high speed includes directing and focusing radiation onto a sample, and receiving radiation from the sample and directing received radiation to an image sensor. Notably, the method includes driving the image sensor with predetermined signals. The predetermined signals minimize a settling time of an output signal of the image sensor. The predetermined signals are controlled by a phase accumulator, which is used to select look-up values. The driving can further include loading an initial phase value, selecting most significant bits of the phase accumulator, and converting the look-up values to an analog signal. In one embodiment, for each cycle of a phase clock, a phase increment can be added to the phase accumulator. The driving can be performed by a custom waveform generator.
Abstract:
A pulsed UV laser assembly includes a partial reflector or beam splitter that divides each fundamental pulse into two sub-pulses and directs one sub-pulse to one end of a Bragg grating and the other pulse to the other end of the Bragg grating (or another Bragg grating) such that both sub-pulses are stretched and receive opposing (positive and negative) frequency chirps. The two stretched sub-pulses are combined to generate sum frequency light having a narrower bandwidth than could be obtained by second-harmonic generation directly from the fundamental. UV wavelengths may be generated directly from the sum frequency light or from a harmonic conversion scheme incorporating the sum frequency light. The UV laser may further incorporate other bandwidth reducing schemes. The pulsed UV laser may be used in an inspection or metrology system.
Abstract:
A scanning electron microscope incorporates a multi-pixel solid-state electron detector. The multi-pixel solid-state detector may detect back-scattered and/or secondary electrons. The multi-pixel solid-state detector may incorporate analog-to-digital converters and other circuits. The multi-pixel solid state detector may be capable of approximately determining the energy of incident electrons and/or may contain circuits for processing or analyzing the electron signals. The multi-pixel solid state detector is suitable for high-speed operation such as at a speed of about 100 MHz or higher. The scanning electron microscope may be used for reviewing, inspecting or measuring a sample such an unpatterned semiconductor wafer, a patterned semiconductor wafer, a reticle or a photomask. A method of reviewing or inspecting a sample is also described.
Abstract:
A DUV laser includes an optical bandwidth filtering device, such as etalon, which is disposed outside of the laser oscillator cavity of the fundamental laser, and which directs one range of wavelengths into one portion of a frequency conversion chain and another range of wavelengths into another portion of the frequency conversion train, thereby reducing the bandwidth of the DUV laser output while maintaining high conversion efficiency in the frequency conversion chain.