Abstract:
The present invention is a physiological measurement and stimulation device that can autonomously adapt its actuation output behavior based on acquired data in the form of biofeedback sensory measurements. When operating the invention, the user can place the device on the body at the intended area of operation, at which time the physiological measurements sensors can initiate data collection. Either prior to or following this time, the actuator can be activated and controlled manually and/or autonomously per a command signal generated by the control system. The operation of the present invention can be continued until the invention detects that a predetermined threshold has been reached. When the invention is used as a sexual stimulation device, the predetermined threshold can be physiological data corresponding to various stages of arousal or orgasm.
Abstract:
Time after time studies find that often, even when administered by trained professionals, cardiopulmonary resuscitation (CPR) compression rates and depth are inadequate. Too week, shallow or too forceful compressions may contribute to suboptimal patient outcome. Several parameters are crucial for optimal and properly-administered CPR. Crucial parameters include proper hand positioning on the patient's chest, depth of compression of 4-5 cm, and compression rate of 100 compressions per minute. The crucial parameters are often affected by patient parameters, and relative to the patient, rescuer parameters, such as patient thoracic volume; weight; age; gender; and rescuer's, relative to the patient's, parameters, such as weight, height; physical form, etc. Proposed is an automated CPR feedback device with user programmable settings for assisting with real-time feedback and subsequently correcting rescuers patient customized CPR technique.
Abstract:
A wearable robot includes a mechanism unit for assisting an wearer of the wearable robot in walking motion; a detection unit equipped on the wearer's body for detecting a moving direction of an arm of the wearer; and a controller for determining a walking intent of the wearer based on the moving direction of the arm of the wearer detected by the detection unit, and controlling the mechanism unit to produce auxiliary torque corresponding to the determined walking intent.
Abstract:
In at least one aspect, there is provided a system for generating force about one or more joints including a soft exosuit having a plurality of anchor elements and at least one connection element disposed between the plurality of anchor elements. The system also includes at least one sensor to determine a force the at least one connection element or at least one of the plurality of anchor elements and to output signals relating to the force, at least one actuator configured to change a tension in the soft exosuit and at least one controller configured to receive the signals output from the at least one sensor and actuate the at least one actuator responsive to the received signals.
Abstract:
An apparatus includes a drive mechanism, a patient support mechanism, and an electronic system. The drive mechanism is included in a trolley and is configured to suspend the trolley from a support track. The drive mechanism includes a first sensor configured to sense an operating condition of the drive mechanism. The patient support mechanism couples to the trolley and includes a tether and a second sensor. The tether can be operatively coupled to a patient such that the patient support mechanism supports the patient. The second sensor is configured to sense an operating condition of the patient support mechanism. The electronic system is included in the trolley and has at least a processor and a memory. The processor is configured to define a gait characteristic of the patient based at least in part on a signal received from the first sensor and a signal received from the second sensor.
Abstract:
Disclosed are a walking assistance robot and a method of controlling the walking assistance robot. The control method includes collecting motion information by sensing or measuring a motion of at least one joint, determining a motion state of the at least one joint based on the sensed or measured motion of the at least one joint, and controlling the walking assistance robot based on the determined motion state of the at least one joint.
Abstract:
A walking assistance moving vehicle includes a walking assistance moving vehicle main body with a pair of drive wheels, a drive wheel rotational speed sensor, a turning sensor, and a controller. The drive wheel rotational speed sensor senses drive wheel rotational speed of each of the drive wheels. The turning sensor directly senses at least one of a first lateral acceleration and a first turning angular velocity. The controller indirectly acquires at least one of a second lateral acceleration and a second turning angular velocity based on the drive wheel rotational speed sensed by the drive wheel rotational speed sensor. The controller performs a first control to decelerate or stop drive of the drive wheels based on a comparison of the first turning angular velocity and the second turning angular velocity or a comparison of the first lateral acceleration and the second lateral acceleration.
Abstract:
Image stabilization systems and methods include a detector configured to detect images, an actuator coupled to the detector, a sensor coupled to the detector and configured to detect motion of the detector, and an electronic processor in communication with the sensor and the actuator, where the electronic processor is configured to, for example: (a) receive information about motion of the detector from the sensor; (b) determine components of the motion of the detector, and associate a class with each of the determined components; (c) identify components to be compensated from among the determined components based on the associated classes; and (d) generate a control signal that causes the actuator to adjust a position of at least a portion of the detector to compensate for the identified components.
Abstract:
The present disclosure provides an interactive simulation device which can cooperate with media devices to provide a user experience of interaction between the user and a target object. An interactive simulation device of the present disclosure may exchange data with another interactive simulation device for enabling simulated interaction of senses such as tactile sense and feedback between their users across different locations. The interactive simulation device may receive motion data from other interactive simulation devices as an input of its actuator and sense the user's feedback to the motion data and send back to the interactive simulation devices. The present disclosure also provides a method and a system performing the method for simulating interaction or providing simulated interaction as a service by applying the interactive simulation device. The present disclosure further provides the application of sexual interaction and sexual stimulation of the interactive stimulation devices.
Abstract:
A vibratory massaging device having a spaced plurality of proximity sensors distributed on a massaging surface of the device, and a control circuit operative for controlling vibratory intensities in response to activation of particular ones of the sensors being close to a user's body parts being massaged. The device can be configured as a dildo, including both main and secondary vibrators, the secondary vibrator being within an arm portion that is configured for clitoral stimulation. At least one of the vibrators is automatically driven at increased intensity as penetration increases.