Abstract:
The present invention generally relates to a MEMS DVC and a method for fabrication thereof. The MEMS DVC comprises a plate movable from a position spaced a first distance from an RF electrode and a second position spaced a second distance from the RF electrode that is less than the first distance. When in the second position, the plate is spaced from the RF electrode by a dielectric layer that has an RF plateau over the RF electrode. One or more secondary landing contacts and one or more plate bend contacts may be present as well to ensure that the plate obtains a good contact with the RF plateau and a consistent C max value can be obtained. On the figure PB contact is the plate bend contact, SL contact is the Second Landing contact and the PD electrode is the Pull Down electrode.
Abstract:
A semiconductor device includes a substrate, a first dielectric layer located above the substrate, a moving-gate transducer, and a proof mass. The moving-gate transducer is at least partially formed within the substrate and is at least partially formed within the first dielectric layer. The proof mass includes a portion of the first dielectric layer and a portion of a silicon layer. The silicon layer is located above the first dielectric layer.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
Disclosed is a MEMS device having lower, upper and release chambers with a similar pressure and/or a similar gaseous chemistry. The MEMS device includes a top MEMS plate and a bottom MEMS plate. The MEMS device also includes a lower chamber between the bottom MEMS plate and the top MEMS plate, and an upper chamber between the top MEMS plate and a first sealing layer. The MEMS device further includes a release chamber between the top MEMS plate and a second sealing layer, the release chamber allowing gaseous content of the upper and/or the lower chambers to be released. Also disclosed is a double release method for releasing gaseous content of the upper and/or the lower chambers.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device includes a first substrate with a first surface and a second surface, the first substrate including a base layer, a moveable beam disposed on the base layer, at least one metal layer, and one or more standoffs disposed on the base layer such that one or more metal layers are situated on the top surface of the one or more standoffs. The MEMS device further includes a second substrate including one or more metal layers bonded to the one or more standoffs resulting in an electrical connection between at least a portion of the one or more metal layers of the second substrate and one or more of the at least one electrode on the bottom surface and the at least one electrode on the top surface.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one fixed electrode on a substrate. The method further includes forming a Micro-Electro-Mechanical System (MEMS) beam with a varying width dimension, as viewed from a top of the MEMS beam, over the at least one fixed electrode.
Abstract:
The invention relates to a varactor with an actuator, wherein the first actuator surface (2a) of the actuator is embodied on a substrate (1), and a second actuator surface (2b) is embodied on a first movable membrane (3a). In this context, the first movable membrane (3a) is arranged above an upper side (1a) of the substrate (1). A second movable membrane (2b) is arranged below a lower side (1b) of the substrate (1) facing away from the upper side (1a). The invention further relates to a varactor system made from two such varactors.
Abstract:
A CMOS compatible MEMS microphone is disclosed. In one embodiment, the microphone comprises an SOI substrate, wherein a CMOS circuitry is accommodated on its silicon device layer; a microphone diaphragm formed with a part of the silicon device layer, wherein the microphone diaphragm is doped to become conductive; a microphone backplate including CMOS passivation layers with a metal layer sandwiched and a plurality of through holes, provided above the silicon device layer, wherein the plurality of through holes are formed in the portion thereof opposite to the microphone diaphragm, and the metal layer forms an electrode plate of the backplate; a plurality of dimples protruding from the lower surface of the microphone backplate opposite to the diaphragm; and an air gap provided between the diaphragm and the microphone backplate.
Abstract:
According to one embodiment, a MEMS device comprises a first electrode provided on a support substrate, a burying insulating film formed at the sides of the first electrode, and a second electrode opposed to the first electrode, having ends extending outside the ends of the first electrode and able to move in the direction it is opposed to the first electrode.
Abstract:
A tunable capacitor includes a substrate, a movable member, a first capacitive plate, a second capacitive plate, a third capacitive plate and a set of electrode plates. The movable member is disposed on the substrate. The movable member is adapted for moving away or toward the substrate to have a first position and a second position, respectively. The first capacitive plate is disposed on the movable member and faces the substrate. The second capacitive plate and the third capacitive plate are disposed on the substrate and face the first capacitive plate. The set of electrode plates, disposed on the substrate, faces the at least one movable member. The set of electrode plates, driven by an electrical voltage, generates electrostatic force causing the movable member to be drawn from the first position to the second position thereof to correspondingly adjust capacitance between the capacitive plates.