Abstract:
A method and apparatus are described for fabricating a high aspect ratio MEMS sensor device having multiple vertically-stacked inertial transducer elements (101B, 110D) formed in different layers of a multi-layer semiconductor structure (100) and one or more cap devices (200, 300) bonded to the multi-layer semiconductor structure (100) to protect any exposed inertial transducer element from ambient environmental conditions.
Abstract:
According to one embodiment, a method of manufacturing a device is provided. A amorphous metal layer is formed. A metal layer containing metal and having a crystal plane oriented to a predetermined plane is formed on the amorphous metal layer. A first layer containing semiconductor including silicon, and metal identical to the metal contained in the metal layer is formed on the metal layer. The first layer is changed to a second layer containing a compound of the semiconductor and the metal, the compound having a crystal plane oriented to the predetermined plane. A third layer containing polycrystalline silicon-germanium and having a crystal plane oriented to the predetermined plane is formed on the second layer.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
Abstract:
A functional element includes a substrate which is provided with a concave section; a stationary section connected to a wall section that defines the concave section of the substrate; an elastic section which extends from the stationary section and is capable of stretching and contracting in a first axis direction; a movable body connected to the elastic section; a movable electrode section which extends from the movable body. The concave section includes a cutout section which is provided on the wall section. The stationary section includes an overlap section which is spaced with the substrate, and overlaps the concave section when seen in a plan view. At least a portion of the overlap section overlaps the cutout section when seen in the plan view, and the elastic section extends from the overlap section.
Abstract:
Certain microelectromechanical systems (MEMS) devices, and methods of creating them, are disclosed. The method may include forming a structural layer over a substrate; forming a mask layer over the structural layer, wherein the mask layer is formed with a material selective to an etching process; forming a plurality of nanoclusters on the mask layer; and etching the structural layer using at least the etching process.
Abstract:
A semiconductor device includes a substrate that is made of a semiconductor material and has a main surface formed with a recess. The semiconductor device also includes a wiring layer formed on the substrate, an electronic element housed in the recess, and a sealing resin covering at least a part of the electronic element.
Abstract:
A chip package included a chip, a first though hole, a laser stop structure, a first isolation layer, a second though hole and a conductive layer. The first though hole is extended from the second surface to the first surface of the chip to expose a conductive pad, and the laser stop structure is disposed on the conductive pad exposed by the first through hole, which an upper surface of the laser stop structure is above the second surface. The first isolation layer covers the second surface and the laser stop structure, and the first isolation layer has a third surface opposite to the second surface. The second though hole is extended from the third surface to the second surface to expose the laser stop structure, and a conductive layer is on the third surface and extended into the second though hole to contact the laser stop structure.
Abstract:
A MEMS and a method of manufacturing MEMS components are provided. The method includes providing a MEMS wafer stack including a top cap wafer, a MEMS wafer and optionally a bottom cap wafer. The MEMS wafer has MEMS structures patterned therein. The MEMS wafer and the cap wafers include insulated conducting channels forming insulated conducting pathways extending within the wafer stack. The wafer stack is bonded to an integrated circuit wafer having electrical contacts on its top side, such that the insulated conducting pathways extend from the integrated circuit wafer to the outer side of the top cap wafer. Electrical contacts on the outer side of the top cap wafer are formed and are electrically connected to the respective insulated conducting channels of the top cap wafer. The MEMS wafer stack and the integrated circuit wafer are then diced into components having respective sealed chambers and MEMS structures housed therein.
Abstract:
The micro-electromechanical semiconductor component is provided with a semiconductor substrate (4, 5), a reversibly deformable bending element (8a) made of semiconductor material, and at least one transistor that is sensitive to mechanical stresses, said transistor being designed as an integrated component in the bending element (8a). The transistor is arranged in an implanted active region pan (78a) that is made of a semiconductor material of a first conducting type and is introduced in the bending element (8a). Two mutually spaced, implanted drain and source regions (79, 80) made of a semiconductor material of a second conducting type are designed in the active region pan (78a), a channel region extending between said two regions. Implanted feed lines made of a semiconductor material of the second conducting type lead to the drain and source regions (79, 80). The upper face of the active region pan (78a) is covered by a gate oxide (81a). In the area of the channel region, a gate electrode (81) made of polysilicon is located on the gate oxide (81a), a feed line likewise made of polysilicon leading to said gate electrode.
Abstract:
A microelectromechanical systems (MEMS) sensor includes a first layer on which a first displacement limiting part and a second displacement limiting part are formed; a third layer on which a mass body part and a support part are formed; and a second layer connecting the first layer and the third layer to each other, wherein at least a portion of the first displacement limiting part is directly opposed to the mass body part, and at least a portion of the second displacement limiting part is directly opposed to the support part.