Abstract:
A method of making a system-in-package device, and a system-in-package device is disclosed. In the method, at least one first species die with predetermined dimensions, at least one second species die with predetermined dimensions, and at least one further component of the system-in-device is included in the system-in package device. At least one of the first and second species dies is selected for redimensioning, and material is added to at least one side of the selected die such that the added material and the selected die form a redimensioned die structure. A connecting layer is formed on the redimensioned die structure. The redimensioned die structure is dimensioned to allow mounting of the non-selected die and the at least one further component into contact with the redimensioned die structure via the connecting layer.
Abstract:
A flexible patch pump for controllable accurate subcutaneous delivery of one or more medicaments to a patient includes a laminated layered structure. The pump may have a rigid reservoir layer including a number of rigid reservoirs disposed in a flexible material; a flexible microfluidic layer including a compliant membrane for sealing the rigid reservoirs, a network of microfluidic channels connecting the rigid reservoirs, and a number of inlet and/or outlet valves corresponding to the rigid reservoirs; and a flexible-rigid electronic circuit layer including a number of individually-addressable actuators. In operation, the rigid reservoirs may contain medicament that is dispensed in precise volumes at appropriate times due, for to example, to a pressure change in an addressed reservoir caused by displacement of the compliant membrane or other actuation element.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of making a system-in-package device, and a system-in-package device is disclosed. In the method, at least one first species die with predetermined dimensions, at least one second species die with predetermined dimensions, and at least one further component of the system-in-device is included in the system-in package device. At least one of the first and second species dies is selected for redimensioning, and material is added to at least one side of the selected die such that the added material and the selected die form a redimensioned die structure. A connecting layer is formed on the redimensioned die structure. The redimensioned die structure is dimensioned to allow mounting of the non-selected die and the at least one further component into contact with the redimensioned die structure via the connecting layer.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
A micro-electromechanical (MEM) synthetic jet actuator includes a semiconductor substrate having a cavity extending therethrough, such that a first opening is formed in a first surface of the semiconductor substrate and such that a second opening is formed in a second surface of the semiconductor substrate. A first flexible membrane is formed on at least a portion of the front surface of the semiconductor substrate and extends over the first opening. The first flexible membrane also includes an orifice formed therein aligned with the first opening. The MEM synthetic jet actuator also includes a second flexible membrane that is formed on at least a portion of the second surface of the semiconductor substrate and that extends over the second opening, and a pair of actuator elements coupled to the flexible membranes and aligned with the cavity to selectively cause displacement of the first and second flexible membranes.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A MEMS integrated circuit comprising a peristaltic microfluidic pump and control circuitry for the pump. The pump comprises a pumping chamber positioned between an inlet and an outlet; a plurality of moveable fingers positioned in a wall of the pumping chamber, the fingers being arranged in a row along the wall; and a plurality of thermal bend actuators. Each actuator is associated with a respective finger such that actuation of the thermal bend actuator causes movement of the respective finger into the pumping chamber. The control circuitry controls actuation of the plurality of actuators. The control circuitry is configured to provide a peristaltic pumping action in each pumping chamber via peristaltic movement of the fingers.
Abstract:
A microfluidic system for purposes of analysis and diagnosis is made up of layers arranged substantially one above the other. The microfluidic system includes at least a first and a second conducting-through layer, which respectively comprise at least one channel for a fluid to be conducted through in the respective conducting-through layer. The microfluidic system further includes at least one chip layer, which comprises at least one active, micromechanical element, the active, micromechanical element being in operative connection with at least one of the channels, and the chip layer being arranged between the first and the second conducting-through layer, and the channels being fluidically connected to one another. A corresponding production method is disclosed in addition to the microfluid system.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.