Abstract:
Methods are provided for refining natural oil feedstocks. The methods include reacting the feedstock with a low-molecular-weight olefin or mid-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product including olefins and esters. In certain embodiments, the methods further include separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further include transesterifying the esters in the presence of an alcohol to form a transesterified product.
Abstract:
Water may be removed from a biofuel or biofuel intermediate by using a demulsifier. The demulsifier includes the product of oxyalkylating a resin prepared from a formulation including a phenol and a compound selected from the group consisting of an aldehyde, a diamine a polyamine and mixtures thereof. The demulsifier may also be used with admixtures of biofuels, biofuel intermediates, or biofuel feedstocks with conventional hydrocarbons.
Abstract:
The present invention relates to a novel Phytophthora phospholipase C and uses thereof, methods of identifying modulators and inhibitors of a biological function of the phospholipase C, and methods of inhibiting Phytophthora growth comprising inhibiting a biological function of a novel Phytophthora phospholipase C.
Abstract:
There is provided a method of producing biodiesel without drying and lipid component extraction steps in an alcohol-rich condition. Also, there is provided a method of effectively producing biodiesel without a catalyst under optimal conditions for transesterification. Production cost and time are reduced by reducing the number of processes, and biodiesel yield is increased.
Abstract:
A process for continuous production of biodiesel from vegetable oils or animal fats by transesterification with methanol or ethanol to give crude fatty acid alkyl esters, subsequent washing with water in a wash column to remove water-soluble impurities, subsequent drying by vaporization of the water content and subsequent removal of steryl glycosides by adsorption onto calcium bentonite, wherein the adsorption column(s) used is/are regenerated in a first step, for desorption of the steryl glycosides, by rinsing with a mixture consisting of fatty acid alkyl esters and methanol or ethanol, and in a subsequent second step, for removal of methanol residues, by rinsing with fatty acid alkyl esters or with gaseous nitrogen or carbon dioxide.
Abstract:
A blendstock for forming a fuel composition for use in internal-combustion engines, includes a polar fluid component, a microblender component, and a neutralizer component. The neutralizer component is present in an amount effective to substantially neutralize the microblender component to allow for the microblender component to substantially spontaneously blend with the polar fluid component. The polar fluid component may include a water component and an alcohol component, and the neutralizer component may include an ammonia component. The blendstock may be added to a hydrocarbon fuel, such as diesel fuel, to form the fuel composition.
Abstract:
Disclosed is an enrichment method for obtaining components for the production of a diesel like fuel additive or a diesel like fuel from crude tall oil. In the method, lipophilic components, being present in said crude tall oil, are extracted with an organic solvent and the resulting extract is washed with sulfuric acid and water.
Abstract:
Use of an algal for biodiesel fuel selected for growing strain of production, the genus Desmodesmus wherein said strain was under high nutrient conditions and is characterized as having a determined fatty by acid nuclear methyl ester content of 2.6% magnetic resonance analysis, nitrogen content of 11.3% and a carbon content of 46.3%. Given the growth and elemental composition of this strain t the instant algal strain is of particular use as a biomass source for biofuel lipids and/or biodiesel fuel production.
Abstract:
Described herein are modified fuels with improved properties. The modified fuels are more efficient when compared to conventional fuels such as gasoline. Additionally, the modified fuels burn more efficiently and produce fewer emissions. Finally, the modified fuels also do not require any modifications to existing engines.
Abstract:
A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction, an optional intermediate fraction, and heavy fraction based on their boiling points. The light fraction and optional intermediate fraction can be upgraded via hydrotreatment to produce a renewable gasoline and a renewable diesel, which may be combined with their petroleum-derived counterparts. The heavy fraction may be subjected to cracking and further separated into light, intermediate, and heavy fractions in order to increase the yield of renewable gasoline and renewable diesel.