Abstract:
A system and a method are provided for maintaining accurate visual color performance of displays. In particular, various embodiments of the present invention described herein provide a system wherein partial color certification is incorporated into the calibration procedure. In the event that the partial color certification is out of tolerance, a full certification procedure is performed. If the full certification procedure is out of tolerance, the calculated errors of the certification procedure are utilized to perform an update to a baseline profile for the display. The updated baseline profile can either replace the existing baseline profile or can be concatenated with the baseline profile to preserve the baseline behavior of the display.
Abstract:
A system and method for calibrating color printers, and related particularly to, a system and method for calibrating color printers over a network utilizing a profile server (representing a networkable computer server system) which provides color transformations in accordance with printer configurations having at least information read from consumable ink or toner cartridges for such printers. Such color transformations enable different color printers, or even the same color printer with different printer configurations, to render color consistently.
Abstract:
Methods and apparatuses for determining a color calibration for different spectral light inputs in an imaging apparatus measurement are disclosed herein. In one embodiment, for example, a method for determining a color calibration for different spectral light inputs in an imaging apparatus measurement can include creating a reference color calibration and a reference luminance scaling calibration for each of a plurality of colors. The method can also include measuring a reference gray value R, G, B for each color in an image measurement of the light source. The method can further include calculating an R, G, B gray value for a first pixel in each of three filtered image measurements. The method can then include calculating pixel ratio values from each of the three first pixel gray values and comparing the reference gray values to the pixel ratio values to determine which one or more reference gray values are closest to the pixel ratio values. The method further includes calculating X, Y, Z values for the first pixel in the image measurement, and then repeating the steps of the method beginning with calculating an R, G, B gray value for each subsequent pixel in the image measurement.
Abstract:
An apparatus, methods, and systems for multi-color projection or display for video or lighting applications. One aspect of the present invention comprises an algorithm for utilizing at least four primary light sources to represent a projected pixel color. The algorithm and associated system can be applied to both a natively monochromatic light source or traditional light sources filtered for their colored components. The algorithm can be used for either color sequential or parallel modes of operation. The algorithm takes input pixel data represented in a universal color coordinate system, performs a color transform, and disperses the results among parallel display devices or sequentially to a single device such that each pixel is presented by the combination of four or more primaries.
Abstract:
Improved methods are provided for calibrating color on a color display coupled to a computer, which are useful for obtaining calibrated data in a virtual proof network for enabling different color devices to render consistent color. Methods involve user interactions with screens on the display to set color display parameters. An apparatus is also provided for calibrating a sensor which may be used for measuring color of a display in one or more of these methods.
Abstract:
Improved methods are provided for calibrating color on a color display coupled to a computer, which are useful for obtaining calibrated data in a virtual proof network for enabling different color devices to render consistent color. Methods involve user interactions with screens on the display to set color display parameters. An apparatus is also provided for calibrating a sensor which may be used for measuring color of a display in one or more of these methods.
Abstract:
The present invention is a system that uses a single channel light meter to measure the actual red, green and blue light output response curves of a CRT monitor to the range of possible input monitor code values for each color. A computer is used to transform a desired corresponding tone scale through the corresponding response curve to obtain a look-up table or video shaper that calibrates the monitor to the desired corresponding tone scale. The transformation includes obtaining a tone scale intensity value for each possible input value and searching the actual response values for a closest match. The input monitor code value used to obtain the actual response matching intensity for the possible input value is the calibrated value displayed by the monitor when an image includes the possible input value. The system is used throughout the life of the monitor to bring the monitor back to calibration as it changes.
Abstract:
In an example method, one or more processing devices receive encoded image data, and cause visual content to be presented on a display device according to the encoded image data. Further, the one or more processing devices receive measurement data regarding the visual content presented on the display device, and determine, based on the measurement data, one or more first perceptual quantizer (PQ) codes corresponding to the visual content presented on the display device. Further, the one or more processing devices determine, based on the encoded image data, one or more second PQ codes, and determine one or more metrics indicative of a performance characteristic the display device based on the first PQ codes and the second PQ codes. The one or more processing devices store a data item including the one or more metrics.
Abstract:
An electronic device with an auxiliary lighting function and an operation method thereof are provided. The electronic device includes a first body, a display screen, and a light-emitting module. The first body has a first surface. The first surface includes a screen area and a border area. The border area surrounds the screen area. The display screen is disposed in the screen area of the first body. The light-emitting module is disposed in the border area of the first body. The light-emitting module provides an illumination light in at least one first area of the border area, and provides an indicating light in at least one second area of the border area.
Abstract:
The present disclosure relates to a display device comprising at least two display units as well as an illuminating device for illuminating a transition area between the at least two display units. The disclosure further relates to a method of operating such a display device as well as an entertainment machine comprising such a display device.