Abstract:
In a device for measuring the complete polarization state of light over a spectral bandwidth, an optical input signal (41) with wavelengths of light within a spectral band is incident on two or more diffraction gratings (42, 44, 46, 48), or incident from at least two directions on one or more diffraction gratings (72, 74), and the intensity is measured as a function of wavelength for at least four of the diffraction spectra produced by the grating(s). The polarization state of light is then calculated as a function of wavelength over the spectral bandwidth from the intensity measurements.
Abstract:
An ellipsometric apparatus provides two impinging focused probe beams directed to reflect off the sample along two mutually distinct and preferably substantially perpendicular directions. A rotating stage rotates sections of the wafer into the travel area defined by two linear axes of two perpendicularly oriented linear stages. As a result, an entire wafer is accessed for measurement with the linear stages having a travel range of only half the wafer diameter. The reduced linear travel results in a small travel envelope occupied by the wafer and consequently in a small footprint of the apparatus. The use of two perpendicularly directed probe beams permits measurement of periodic structures along a preferred direction while permitting the use of a reduced motion stage.
Abstract:
With extremely-thin-film and thin-film measurement, models are formed based upon a combination of film thickness, optical constants obtained using the dispersion formula, incident angle, etc., and the model and measured spectrums are fit by BLMC for a single layer of a structure with a certain number of iterations, obtaining information regarding the single layer. With thin-film multi-layer-structure measurement, models are formed for multiple layers of a thin-film multi-layer structure likewise, and fit by BLMC or EBLMC, obtaining information regarding the thin-film multi-layer structure. In either measurement, light is cast onto a thin film on a substrate to be measured while changing the wavelength as a parameter in order to obtain the spectrums nullE(nulli) and nullE(nulli) for each wavelength nulli, representing the change in polarization between the incident and reflected light. The measured spectrums are fit, obtaining the best model. The results are confirmed and stored, as necessary.
Abstract:
An optical signal emitted from a semiconductor laser (1) is converged by a lens (2) and is then received by a single uniaxial birefringent crystal (3). The uniaxial birefringent crystal (3) has a C axis that is inclined at an angle other than 90 degrees against a laser optical axis that is the direction in-which the optical signal is traveling so as to output an optical signal having a polarized wave component of constant intensity corresponding to the wavelength of the optical signal regardless of temperature changes thereof. The optical signal passing through the uniaxial birefringent crystal (3) has an ordinary ray vibrating in a direction perpendicular to a plane including both the C axis and the laser optical axis, and an extraordinary ray vibrating in a direction perpendicular to both the ordinary ray and the laser optical axis. A polarizer (4) receives this optical signal and allows a p-polarized component of the optical signal to pass therethrough. A first main photo detector (5) detects the p-polarized component of the optical signal that has passed through the polarizer 4 and then detects the intensity of the received p-polarized component. A second photo detector (6) directly receives the optical signal converged by the lens 2. Therefore, the wavelength of the optical signal can be accurately monitored without being affected by temperature changes.
Abstract:
A liquid crystal based polarimetric system, a process for the calibration of this polarimetric system, and a polarimetric measurement process intended for measuring the representative parameters of a sample in which the polarimetric system contains an excitation section emitting a light beam that passes through a polarization state generator (PSG) and onto a sample. After reflection or transmission by the sample, the beam goes through an analysis section with a polarization state detector (PSD). The PSG and PSD each have a first and a second liquid crystal elements LCj (jnull1,2) having, for each LCj element of the PSG (respectively for each LCj element of the PSD), an extraordinary axis making an angle nullj (resp. nullnullj) with respect to the polarization direction (i), and a retardation nullj (resp (nullnullj) between its ordinary and extraordinary axes, the liquid crystals LCj elements being positioned in reverse order in the PSD with respect to the LCj elements of the PSG.
Abstract:
A practical system and method for precisely measuring low-level birefringence properties (retardance and fast axis orientation) of optical materials (26). The system permits multiple measurements to be taken across the area of a sample to detect and graphically display (100) variations in the birefringence properties across the sample area. In a preferred embodiment, the system incorporates a photoelastic modulator (24) for modulating polarized light that is then directed through a sample (26). The beam (“Bi”) propagating from the sample is separated into two parts, with one part (“B1”) having a polarization direction different than the polarization direction of the other beam part (“B2”). These separate beam parts are then processed as distinct channels. Detection mechanisms (32, 50) associated with each channel detect the time varying light intensity corresponding to each of the two parts of the beam. This information is combined for calculating a precise measure of the retardance induced by the sample, as well as the sample's fast axis orientation.
Abstract:
The invention concerns an ellipsometer comprising a source (S) supplying at least an infrared radiation, a sample-holder (PE), a sensor (D), a first optical system mounted between the source (S) and the sample-holder (PE), so as to illuminate a sample placed on the sample-holder, under oblique view with a polarised light beam and a second optical system mounted between the sample-holder (PE) and the sensor (D) for collecting the light reflected by the sample. The ellipsometer further comprises a blocking device (F2) mounted on the reflection path in the focal plane of the focusing device (M2) of the second optical system, and adapted to block parasite rays (RP) derived from the rear surface (FAR) of the sample and to allow through useful rays (RU) derived from the front surface (FAV) of the sample towards the sensor (D), thereby enabling to obtain a resolution with respect to the sample front and rear surfaces.
Abstract:
To measure the concentration of an optically active substance in a solution without contacting the solution, the concentration measuring apparatus of the present invention comprises: a light source for outputting linearly polarized light; a light intensity detecting element disposed opposite the light source with a sample placed therebetween; an optically active liquid crystal element placed between the light source and the light intensity detection circuit; a control circuit which controls the voltage to be applied to the optically active liquid crystal element so that an output value from the light intensity detecting element will in effect take an extreme value; and a concentration computing circuit for computing the concentration of an optically active substance in the sample, based on an output from the control circuit.
Abstract:
A polarimeter system that averages multiple retardant measurement samples to cancel the effects of system birefringence in the diagnostic path. The retardant measurement errors arising from system birefringence have a symmetry that repeats over each complete cycle of optical signal rotation cycle. This symmetry is such that averaging the four retardance measurements collected over one complete rotation cycle cancels the effects of system birefringence, leaving a mean retardance measurement free of residual polarization bias. Apparatus is provided for determining the birefringence, thickness, and fiber orientation of the nerve fiber layer at the fundus of the eye by measuring the polarization bias induced in a return beam of polarized light that is reflected at the ocular fundus from an incident beam of a known polarization state. A corneal polarization compensator cancels the birefringent effects of the cornea and other portions of the eye anterior to the fundus.
Abstract:
An apparatus and method for detecting the state of polarization (SOP). The apparatus of the present invention includes a phase retarder and a polarizer which rotate with different speeds. In the method of the present invention, optical signals passed through the rotating phase retarder and the rotating polarizer are detected and their harmonic components related to rotating frequencies of phase retarder and polarizer are analyzed, which gives the Stokes parameters representing the state of polarization. According to the present invention, the amount of phase retardation at the phase retarder can be obtained together with the state of polarization using frequency component analysis, reducing measurement errors. The present invention has advantages in SOP measurement of wide wavelength range, increasing the measurement accuracy.