Abstract:
An optic device includes a multilayer zone forming a redirection section for redirecting and transmitting photons through total internal reflection, each multilayer zone including a high index material having a first real refractive index n1 and a first absorption coefficient β1, a low index material having a second real refractive index n2 and a second absorption coefficient β2, and a grading zone disposed between the high index material and the low index material and including a grading layer having a third real refractive index n3 and a third absorption coefficient β3, wherein n1>n3>n2.
Abstract:
The device is configured from: a reflective surface shape controllable mirror in which a band-shaped X-ray reflective surface 2 is formed on a central portion of a front surface of a substrate 1, reference planes 3 are formed along both sides of the X-ray reflective surface, and a plurality of piezoelectric elements 4 are attached to at least one of front and back surfaces of the substrate so as to be arranged in the longitudinal direction of the X-ray reflective surface on both side portions of the substrate, and a multichannel control system for applying a voltage to each of the piezoelectric elements.
Abstract:
A radiation source is configured to generate radiation. The radiation source includes a fuel droplet generator constructed and arranged to generate a stream of droplets of fuel that are directed to a plasma generation site; a laser constructed and arranged to generate a laser beam that is directed to the plasma generation site, an angle between the direction of movement of the stream of droplets and the direction of the laser beam being less than about 90°; and a collector constructed and arranged to collect radiation generated by a plasma formed at the plasma formation site when the beam of radiation and a droplet collide. The collector is configured to reflect the radiation substantially along an optical axis of the radiation source. The laser beam is directed to the plasma generation site through an aperture provided in the collector.
Abstract:
An illumination optical unit includes a collector mirror which produces a polarization distribution that is applied to the first faceted optical element during the operation of the illumination optical unit. There are at least two first facet elements to which radiation having a differing polarization is applied. The first faceted optical element has at least one first state in which the normal vectors of the reflective surfaces of the first facet elements are selected so that a first predetermined polarization distribution results at the location of the object field during the operation of the illumination optical unit.
Abstract:
An X-ray optical configuration for irradiation of a sample (1) with an X-ray beam having a line-shaped cross-section, wherein the configuration contains an X-ray source (2) and a beam-conditioning X-ray optics, is characterized in that the X-ray source (2) comprises a brilliant point source (4) and the X-ray optics comprises an X-ray optical element (3) which conditions X-ray light emitted by the point source in such a fashion that the X-ray beam is rendered parallel in one direction perpendicular to the beam propagation direction and remains divergent in a direction which is perpendicular thereto and also to the beam propagation direction. An X-ray optical element of this type enables use of both point-shaped and line-shaped beam geometries without complicated and time-consuming conversion work.
Abstract:
A mammograph is provided. The mammograph includes a source of X-rays; a detector of X-rays, the source being configured to emit at least one beam of X-rays to the detector; and an optic control device configured to control the direction of X-rays emitted by the source such that the X-rays emitted. by the source are substantially parallel to one another,
Abstract:
A device for X-ray analysis of a sample (1), including: a generation system for the generation of an X-ray beam to irradiate an analysis zone of the sample, said analysis zone defining a analysis mean plane, and the X-ray beam being emitted along a direction of incidence; a detection system for the detection, in at least one dimension, of X-rays diffracted by the irradiated analysis zone. An analyser system located between the sample and the detection system and includes an X-ray diffracting surface forming a partial surface of revolution about an axis of revolution being contained in the analysis mean plane, with the axis of revolution being distinct from the direction of incidence and passing through the centre of the analysis zone, and with the diffracting surface being oriented so as to diffract the X-rays toward the detection system.
Abstract:
A cooling system (10) for an extreme ultraviolet (EUV) grazing incidence collector (GIC) mirror assembly (240) having at least one shell (20) with a back surface (22) is disclosed. The cooling system has a plurality of spaced apart circularly configured cooling lines (30) arranged in parallel planes (PL) that are perpendicular to the shell central axis (AC) and that are in thermal contact with and that run around the back surface. Input and output secondary cooling-fluid manifolds (44, 46) are respectively fluidly connected to the plurality of cooling lines to flow a cooling fluid from the input secondary cooling-fluid manifold to the output cooling secondary fluid manifold over two semicircular paths for each cooling line. Separating the cooling fluid input and output locations reduces thermal gradients that can cause local surface deformations in the shell that can lead to degraded focusing performance.
Abstract:
A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon ice provided by the target portion to an irradiation location. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
Abstract:
A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon liquid in the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.