Abstract:
A thermoelectronic energy converter device (100) comprises an electron emitter (11) being adapted for a temperature-dependent release of electrons (1), an electron collector (21) being adapted for collecting the electrons (1), wherein the electron collector (21) is spaced from the electron emitter (11) by an evacuated gap (2), a gate electrode (31) being arranged between the electron emitter (11) and the electron collector (21) for subjecting the electrons (1) in the gap (2) to an accelerating electric potential, wherein the gate electrode (31) has a plurality of electrode openings (34) being arranged for transmitting electrons (1) miming from the electron emitter (11) to the electron collector (21), and a magnetic field device (50) being arranged for creating a magnetic field with magnetic field lines extending between the electron emitter and the electron collector (11, 21), wherein the magnetic field device (50) is arranged such that at least a portion of the magnetic field lines pass through the electrode openings (34). Furthermore, a method of converting energy using the thermoelectronic energy converter device (100) is described.
Abstract:
Converter device for converting energy from electromagnetic radiation, in particular concentrated solar energy, in electrical power, comprising a thermionic emitter (2) and an absorber (1) of electromagnetic radiation, configured to transform electromagnetic radiation energy to thermal energy, having an outer surface (10) configured to be exposed to electromagnetic radiation and an inner surface integrally coupled to the thermionic emitter (2), the outer surface (10) being provided with a sub-micrometer periodic surface structure, the thermionic emitter (2) being monolithically integrated on said inner surface of the absorber (1), the absorber (1) being made of a material selected from the group comprising or consisting of carbide or aluminium nitride-based ceramic materials, and pyrolitic graphite, the thermionic emitter (2) being made of a material selected from the group comprising or consisting of thin film diamond deposited through chemical vapour deposition (CVD), thin film titanium nitride (TiN) or molybdenum silicide or di carbides or di borides-based ceramic materials, and refractory metals.
Abstract:
Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200° C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
Abstract:
A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
Abstract:
Particulated structures and their method of manufacture for use in an electrical generator employing gas-mediated charge transfer are disclosed. The structures comprise a multiplicity of particles which contain voids between first and second opposing surfaces of said particles. At least a portion of said opposing surfaces are modified such that the charge transferability of said first opposing surfaces differs from the charge transferability of said second opposing surfaces.