Abstract:
A circuit board connector assembly mounted in a housing and method of mounting are described. The assembly has orthogonal first and second circuit boards (CB). The CB has a CB connector containing a CB housing with CB electrical contacts. A flexible electrical link has a link connector mounted in a link connector housing with link electrical contacts. A resilient pad is mounted on a link connector housing and a flexible sheet is mounted to both the pad and the link. The sheet spans a length of the link. When the length of the link is substantially planar, the sheet provides a ramp tapering away from the pad. During mounting of the assembly in the housing, the CB connector is operatively coupled to the link connector thereby forming a first connector assembly, and an abutment edge of the second circuit board slidably engages the sheet thereby compressing the pad.
Abstract:
A method of patterning a conductor on a substrate includes providing an inked elastomeric stamp inked with self-assembled monolayer-forming molecules and having a relief pattern with raised features. Then the raised features of the inked stamp contact a metal-coated visible light transparent substrate. Then the metal is etched to form an electrically conductive micropattern corresponding to the raised features of the inked stamp on the visible light transparent substrate.
Abstract:
An exemplary printed circuit board assembly includes a printed circuit board, four supporting members, four shock-absorption members, and four fixing members. The printed circuit board defines a plurality of cutouts therein. Each supporting member defines a positioning hole therein. The shock-absorption members are snapped in the cutouts, and each has a first surface contacting the corresponding supporting member, a second surface parallel to the first surface, and a through hole extending through the first and second surfaces. The first and second surfaces are disposed at opposite sides of the printed circuit board. Each fixing member comprises a first portion pressed on the second surface of the corresponding shock-absorption member, and a second portion extending through the through hole and engaging in the positioning hole.
Abstract:
A card connector dampening assembly comprises a connector coupled to a printed circuit board and configured to receive an electronic card connected therewith and a dampening member disposed at least partially between the printed circuit board and the electronic card.
Abstract:
A prepreg comprising composite woven cloth or non-woven cloth composed of glass fiber and polyolefin fiber that are a main part of the cloth and a thermosetting resin composition that gives a cured product having a low thermal expansion coefficient, wherein the thermal expansion coefficient of the cured resin composition at 50 to 100 ° C. is 50 ppm/° C. or less. A printed circuit board, multi layered circuit board, and electronic part are disclosed.
Abstract:
It is an object of the invention to provide a composite with sufficiently reliable bonding and adequately minimized generation of fluff from flaking resin dust and fibers. This object is achieved by the composite (100) of the invention that comprises a fiber sheet (101) impregnated with a resin composition (102), wherein the 20° C. storage elastic modulus of the cured resin composition (102) is 100-2000 MPa. The composite (100) optionally contains perforations (103).
Abstract:
The invention relates to an adhesion assisting agent-bearing metal foil comprising a layer of an adhesion assisting agent containing an epoxy resin as an indispensable component on a metal, wherein the adhesion assisting agent layer has a thickness of 0.1 to 10 μm. The invention also relates to a printed wiring board being a multilayer wiring board having a plurality of layers, wherein an adhesion assisting agent layer is formed between insulating layers.
Abstract:
Heat-activable adhesive tape for producing and further processing flexible conductor tracks, with an adhesive composed at least of a. an acid- or acid anhydride-modified acrylonitrile-butadiene copolymer, and b. an epoxy resin, the weight ratio of the two components a/b being greater than 1.5 and no additional nonpolymer hardener being used.
Abstract:
A conductive elastomeric shielding device (400) for use with an electronic device includes a raised surface (401) and a sidewall (405) formed with the raised surface (401). A turret section (406) is formed with the sidewall (405) where an engagement member (407) projects from the turret section (406) for frictional engagement with an aperture (408) in a printed circuit (PC) board (410). The raised surface and sidewall are manufactured of an elastomeric shielding material for shielding radio frequency (RF) radiation for electronic components used therewith.
Abstract:
A composite substrate is disclosed. In one aspect, the substrate has a stretchable and/or flexible material. The substrate may further have patterned features embedded in the stretchable and/or flexible material. The patterned features have one or more patterned conducting layers.