Abstract:
Provide are an electrode sensor and a method of fabricating the same. the method may include providing a substrate with a first electrode, forming a resist layer on the substrate to cover the first electrode, patterning the resist layer to expose a portion of the first electrode, forming an insulating layer on the substrate, removing the insulating layer on the resist layer and the resist layer to form a well in the insulating layer, and forming a second electrode in the well to be electrically connected to the first electrode. According to the method, it is possible to prevent the first electrode from being damaged. In addition, the second electrode may be configured have an increased surface area, and thus, the electrode can have low impedance.
Abstract:
A substrate including a fluid reservoir and a connected fluid channel, the fluid reservoir positioned away from a component region of the substrate, the fluid channel configured to extend from the fluid reservoir to guide an electrically conductive fluid from the fluid reservoir at a reservoir end of the fluid channel through the fluid channel to a component end of the fluid channel, the component end extending to the component region of the substrate to enable the formation of an electrical connection to a connector of an electronic component appropriately positioned in the component region, formation of the electrical connection allowing the electronic component to be interconnected to other electronic components using one or more of the fluid reservoir and fluid channel.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
Provided is a patterned conductive film may include a conductive interconnected nano-structure film. The conductive interconnected nano-structure film may include a first region and a second region adjacent to the first region. A conductivity of the first region may be at least 1000 times a conductivity of the second region.
Abstract:
This publication discloses a method and apparatus for functionalizing nanoparticle systems. The method comprises treating a nanoparticle-containing layer so as to produce a pattern of structurally transformed zones, the treatment comprising applying an electric field through the nanoparticle layer. According to the invention an AC-field capacitively coupled to the nanoparticle-containing layer is used as said electric field. The treatment preferably results in at least partly sintered structures, which can be used as conductors, for example. The document discloses several realizations for utilization of the disclosed functionalization in mass-fabrication lines.
Abstract:
A bonding material comprising metal particles coated with an organic substance having carbon atoms of 2 to 8, wherein the metal particles comprises first portion of 100 nm or less, and a second portion larger than 100 nm but not larger than 100 μm, each of the portions having at least peak of a particle distribution, based on a volumetric base. The disclosure is further concerned with a bonding method using the bonding material.
Abstract:
A solution including a precious metal nanoparticle and a polymer polymerized from at least two monomers, (1) a monomer having two or more carboxyl groups or carboxyl acid salt groups and (2) a monomer which has π electron-available features. The solution is useful for a catalyst of a process for electroless plating a metal on non-conductive surface.
Abstract:
A system for in-process orientation of particles used in direct-write inks for fabricating a component may include a device for polarizing direct-write particles in an aerosol. An outlet may direct the aerosol including the polarized direct-write particles on a substrate to form a component. An apparatus may cause the polarized direct-write particles to be aligned in a selected orientation to form the component with predetermined characteristics when deposited on the substrate.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
A bonding material using silver nanoparticles considerably changes in coating-material property in response to a slight change in composition, and the stability thereof has been insufficient for large-amount application. A bonding material which uses silver nanoparticles, meets the requirements for mass printing, attains dimensional stability, and gives a smooth printed surface is provided. The bonding material includes silver nanoparticles which have at least an average primary particle diameter of 1 nm to 200 nm and have been coated with an organic substance having 8 or less carbon atoms, a dispersion medium, and a viscosity modifier composed of an organic substance, and has a viscosity (measured at a shear rate of 15.7 [1/s]) of 100 Pa·s or lower and a thixotropic ratio (measured at a shear rate of 3.1 [1/s]/measured at a shear rate of 15.7 [1/s]) of 4 or lower.