Abstract:
A process for forming a laminate with capacitance and the laminate formed thereby. The process includes the steps of providing a substrate and laminating a conductive foil on the substrate wherein the foil has a dielectric. A conductive layer is formed on the dielectric. The conductive foil is treated to electrically isolate a region of conductive foil containing the conductive layer from additional conductive foil. A cathodic conductive couple is made between the conductive layer and a cathode trace and an anodic conductive couple is made between the conductive foil and an anode trace.
Abstract:
A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting a first adhesive on the ledge including inserting the bump into an opening in the first adhesive, mounting a conductive layer on the first adhesive including aligning the bump with an aperture in the conductive layer, then flowing the first adhesive between the bump and the conductive layer, solidifying the first adhesive, then providing a heat spreader that includes the bump, a base and the ledge, then mounting a second adhesive on the ledge, mounting a conductive trace that includes a pad and a terminal on the second adhesive, then mounting a semiconductor device on the bump in a cavity in the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
Provided is a copper foil for a printed circuit board comprising a layer including nickel, zinc, a compound of nickel and that of zinc (hereinafter referred to a “nickel zinc layer”) on a roughened surface of a copper foil, and a chromate film layer on the nickel zinc layer, wherein the zinc add-on weight per unit area of the nickel zinc layer is 180 μg/dm2 or more and 3500 μg/dm2 or less, and the nickel weight ratio in the nickel zinc layer {nickel add-on weight/(nickel add-on weight+zinc add-on weight)} is 0.38 or more and 0.7 or less. This surface treatment technology of a copper foil is able to effectively prevent the circuit corrosion phenomenon in cases of laminating a copper foil on a resin base material and using a sulfuric acid hydrogen peroxide etching solution to perform soft etching to the circuit.
Abstract:
A multilayer printed wiring board including a layered capacitor section provided on a first interlayer resin insulation layer and a high dielectric layer and first and second layered electrodes that sandwich the high dielectric layer. A second interlayer resin insulation layer is provided on the first insulation layer and the capacitor section, and a metal thin-film layer is provided over the capacitor section and on the second insulation layer. An outermost interlayer resin insulation layer is provided on the second insulation layer and the metal thin-film layer. A mounting section is provided on the outermost insulation layer and has first and second external terminals to mount a semiconductor element. Multiple via conductors penetrate each insulation layer. The via conductors include first via conductors that electrically connect the first layered electrode to the first external terminals. Second via conductors electrically connect the second layered electrode to the second external terminals.
Abstract:
A printed circuit board substrate includes an insulation matrix and a waterproof layer. The insulation matrix includes a first surface and a second surface at an opposite side thereof to the first surface. The waterproof layer is formed in the insulation matrix and is arranged between the first surface and the second surface for blocking water from passing therethrough in a thicknesswise direction of the insulation matrix.
Abstract:
A method for fabricating a component-embedded PCB includes: providing a carrier plate having a plating metal layer plated thereon; disposing an electronic component on the plating metal layer of the carrier plate; laminating a metal layer onto the plating metal layer having the electronic component disposed thereon and the carrier plate by a dielectric film; removing the carrier plate and exposing the plating metal layer; and patterning at least one of the metal layer and the plating metal layer to be a circuit layer.
Abstract:
Disclosed is a metal laminated substrate for forming an epitaxial growth film for forming a semiconductor element having high biaxial crystal orientation on a surface of a metal substrate and a method of manufacturing the metal laminated substrate. The manufacturing method includes the steps of activating at least one surface of a metal plate T1 by sputter etching or the like; activating at least one surface of a metal foil T2 made of Cu or a Cu alloy which is cold-rolled at a rolling reduction of 90% or more; laminating the metal plate and the metal foil such that an activated surface of the metal plate and an activated surface of the metal foil face each other in an opposed manner and applying cold rolling to the metal plate and the metal foil which are laminated to each other at a rolling reduction of 10% or less, for example; and biaxially orienting crystals of the metal foil by heat treatment at a temperature of not lower than 150° C. and not higher than 1000° C.
Abstract:
An apparatus for manufacturing a temporary substrate includes a jig having a table, a holding guide for positioning constituent members of the temporary substrate, a holding unit for holding the laminated constituent members, and a heater unit for performing a temporary bonding on the laminated constituent members, and further includes a drive mechanism for moving each member constituting the jig between a standby position and an in-use position. The holding guide has a plurality of step portions formed in such a manner that peripheries of the step portions define areas corresponding to outer sizes of the respective constituent members when the holding guide is moved to the in-use position. The temporary substrate has as the constituent members, a prepreg, inner metal foils respectively stacked on both surfaces of the prepreg and each having a smaller outer size than the prepreg, and outer metal foils respectively stacked on the inner metal foils and each having a larger outer size than the prepreg.
Abstract:
A circuit board having a cavity is provided. The circuit board includes a first core layer, a second core layer, and a central dielectric layer. The first core layer includes a core dielectric layer and a core circuit layer, wherein the core circuit layer is disposed on the core dielectric layer. The second core layer is disposed on the first core layer. The central dielectric layer is disposed between the first core layer and the second core layer. The cavity runs through the second core layer and the central dielectric layer and exposes a portion of the core circuit layer.
Abstract:
A polyimide film-laminated body is composed of a metal layer and an aromatic polyimide layer formed by casting a polyamic acid solution composition, comprising 3,3′,4,4′-biphenyltetracarboxylic dianhydride as an essential tetracarboxylic dianhydride component and with introduction of a specific diamine component, onto a metal foil. The polyimide film-laminated body has an excellent gas permeation rate and moisture permeation rate, with heat resistance, a high elastic modulus and a low linear expansion coefficient, and with reduced foaming and delamination during the high-temperature steps for formation of the laminated body.