Abstract:
A rigid-flex printed circuit board having a rigid section and a flexible section extending from the rigid section is disclosed. The rigid-flex printed circuit board is capable of withstanding high temperatures experienced in high volume production environments utilizing infrared reflow ovens by providing spacers and covers for protecting the flexible section from high temperatures. A process for assembling components and devices on the rigid-flex printed circuit board in a high volume production environment utilizing infrared reflow ovens is also disclosed.
Abstract:
A method for manufacturing rigid-flexible multilayer printed circuit boards and the products thereof. The method comprises the compression molding several layers of materials comprised of a rigid layer, a flexible insulating layer, adhesives, and conductive metal to form a laminate. Flexibility is provided in the printed circuit board by slots in the rigid layer which define the flexible region, the application of flexible insulating material over the defined flexible region, and the removal of the rigid material which occupied the defined flexible region (plug). As disclosed by the present method, a flexible insulating layer is provided in the flexible regions only without the use of preliminary laminates. This method does not require the use of pressure equalizing cushions and does not result in relief formation on an upper layer of conductive metal during compression molding. After forming the composite laminate, it may be shaped as desired, and plated through holes may be provided in the rigid layer by known techniques.
Abstract:
A process for preparation of electronic packages including printed circuits wherein the circuit portions of the package are formed from a web including a plurality of circuits maintained in an array during processing. Holding tabs are provided to maintain the integrity of the array, with the holding tabs being in the form of releasable retention tabs for temporarily holding the array together and accommodating multiple-up processing of the electronic package. For certain portions of the process, the web is separated into multiple-up circuit packages wherein the circuits are disposed within the central portion of the panel, and with the lateral edges and ends collectively defining an annular circuit-free zone. Multiple fiducial points are located within or around the circuit patterns, thereby eliminating or reducing the requirement for circuit-specific tooling and permitting multiple-up handling of the circuits in each array.
Abstract:
A reconfigurable substrate is provided for supporting electrical elements. A conductive strip is disposed on the substrate for linking at least two electrical elements. The substrate has a portion has a portion proximate to the strip for permitting subsequent removal thereof, thereby severing the conductive strip. Thus, a connection of electrical elements may be selectively varied as a function of specification of options which become operative by subsequent removal of a portion of the substrate proximate to the conductive strip.
Abstract:
An apparatus for the automatic separation along predetermined bending fracture lines in basic ceramic platelets of hybrid electronic circuits includes a support plate provided with grooves on its lower face defining bending lines juxtaposed with the fracture lines of the platelet urged against an upper face of plate by upper pressing members being in contact with each of single elements of the platelet defined by the fracture lines and lower retractable members controlled in a predetermined sequence for successive bending of the plate and the platelet subdivided in a plurality of single elements.
Abstract:
The ignition switch for a vehicle such as a lawn and garden tractor is connected directly to a printed circuit board which also includes interlock systems components. The circuit board with the switch and other components is wave soldered in an automated process to make good electrical connections for reduced voltage drops, thereby reducing the number of relays required. Wiring harnesses are also soldered directly to the board during the soldering step. In the preferred embodiment, the ignition switch is fixed to the board and supports the board from the console of the vehicle. However, if the switch or another component on the circuit board needs to be remotely located with respect to the remainder of the board, the switch or component is mounted on a break-away section of the board, and the wires connecting the board sections are soldered with the remainder of the components during the automated process. After the board is manufactured as one assembly, the section is snapped apart from the remainder of the board, and the board and break-away section are mounted at the desired locations on the vehicle.
Abstract:
A printed circuit or printed wire board has a resistor network thereon, wired through conductors that are arranged so that individual circuit paths for different resistor combinations pass onto one of a plurality of peripheral tabs on the printed circuit board. The tabs are joined to the main portion of the circuit board through a frangible connection which permits breaking off the tabs. The main circuit into which the board is to be connected is tested to determine the needed circuit characteristics, and all but one of the tabs on the board are removed to provide the required circuit connections for matching the printed wire board circuit to the main circuit. The breakaway tabs permit selecting a particular circuit impedance so that the board is matched to the main circuit in which it is connected. The board is primarily used for compensation of a communications network where the loop loss of a telephone system is set to the right value.
Abstract:
A symmetrical strip line type microwave circuit, the input-output connection zones of which are made in the following way:a groove is made in that of the insulating substrates which does not bear the central conductor of the symmetrical strip line circuit, along the contour of the desired connection zone;the two substrates are bonded together;the exterior of the structure is protected by electrolytic deposition of a tin-lead alloy;a counter-groove is made in the first substrate along the contour of the connection zone, and that portion of the substrate located inside the zone is eliminated.
Abstract:
A manufacturing process is taught for building electrical equipment having two circuit boards therein which are electrically interconnected by a ribbon conductor. The process includes forming the shape of both boards on a single blank of circuit board material with the two boards juxtaposed in such a position that after the mask of the perimeter of the boards have been cut from the blank of material they still remain joined in one region. All of the elements are then disposed on the joined circuit boards including the ribbon conductor. After all the component parts, including the ribbon conductor have been disposed in place, they are soldered to the joined boards by a single wave soldering operation. After this the board are broken apart and otherwise configured for disposal in spaced apart relationship in the apparatus which they serve.
Abstract:
An integrated circuit semiconductor chip or the like is packaged on a leadless chip carrier. The chip carrier comprises a substrate with an integral coplanar extension frangibly connected to one or more sides. Each such extension has a metallized conductive area forming a shorting bar, interconnecting at least some of the metallized conductive traces formed on the substrate. The extensions with the shorting bars remain attached to the substrate while the chip is being installed to prevent damage to the chip from electrostatic discharges. After chip installation is completed, the extensions are separated from the substrate, thereby removing the interconnections between the traces. In a preferred embodiment, a scoring line along the peripheral edge of the substrate provides the frangible connection to the extension, and the extension is provided with holes along the scoring line to allow side metallization of the substrate.