Abstract:
A breakaway RFID tag is configured such that it comprises part of a Printed Circuit Board Assembly (PCB). Thus, the breakaway RFID tag can be used to track the PCB as it migrates through a manufacturing process. In one embodiment, the RFID tag can be assembled first and then used to track the PCB as it is populated with components and installed into larger assemblies and ultimately into the end device. Once the PCB is installed into a larger assembly or the end device, the breakaway RFID tag is configured such that it can be broken off and attached to the outside of the larger assembly or end device.
Abstract:
RFID tags are used for many purpose including tracking. RFID interrogators are used to retrieve information from tags. In many applications, a plurality of RFID interrogators are required. Synchronization between interrogators in the same theatre of operation is critical to ensure that their broadcasts do not interfere with each other. In fixed RFID interrogator applications, RFID interrogators can be wired together allowing a channel to synchronize the transmissions of the RFID interrogators. Methods described herein can ensure that synchronization is maintained in the event of the failure of a synchronizing master. Furthermore, additional methods for synchronizing RFID interrogators in wireless applications are described allowing synchronization in the absence of wired connections between interrogators.
Abstract:
A printed circuit board includes an in-line PCB region comprising an input/output control region including a first conductive line, and a main PCB region coupled to the in-line PCB region and comprising a semiconductor chip and an input/output signal generation region including a second conductive line. The input/output signal generation region is configured to detect whether or not the first and second conductive lines are electrically connected and to provide an input/output control signal to the semiconductor chip in response to determining whether or not the first and second conductive lines are electrically connected.
Abstract:
A printed circuit board (PCB) has multiple layers, where select portions of one or more conductive layers, referred to as core circuitry, form a semi-flexible PCB portion that is protected by an exposed prepreg layer. The semi-flexible PCB portion having an exposed prepreg layer is formed using a dummy core process that leaves the exposed prepreg layer smooth and undamaged. The core circuitry is part of a core structure. The semi-flexible PCB portion is an extension of the remaining adjacent multiple layer PCB. The remaining portion of the multiple layer PCB is rigid. The core structure is common to both the semi-flexible PCB portion and the remaining rigid PCB portion.
Abstract:
A process for a substrate having a component-disposing area is provided, and includes the following steps. A core layer including a first surface, a metallic layer and a component-disposing area is provided. The metallic layer is disposed on the first surface and patterned to form a patterned metallic layer including pads located in the component-disposing area. A first dielectric layer is formed on the first surface and covers the patterned metallic layer. A laser-resistant metallic pattern is formed on the first dielectric layer and surrounds a projection area of the first dielectric layer. A release film is disposed on the projection area and covers a portion of the laser-resistant metallic pattern within the projection area. A second dielectric layer is formed on the first dielectric layer and covers the release film and the laser-resistant metallic pattern. A first open hole and a plurality of second open holes are formed.
Abstract:
A circuit board in which damage to an electrode is reduced or a light-emitting device in which damage to an electrode is reduced is manufactured. A method for manufacturing the circuit board or the light-emitting device includes the following steps: preparing a processing member including a circuit and a terminal electrode over a first substrate, a separation layer over the terminal electrode, a bonding layer over the separation layer, and a second substrate over the bonding layer; forming a groove in the processing member using a blade capable of cutting processing by being rotated; and removing part of the separation layer, part of the bonding layer, and part of the second substrate to expose part of the terminal electrode.
Abstract:
A multi-layer substrate structure to achieve multiple arrangements of power/ground domains is disclosed. The multi-layer substrate structure comprises a first layer for disposing an integrated circuit thereon and a second layer coupled to the first layer, wherein a connection structure is electrically connected to a plurality of power/ground domains on the second layer. With different combinations of the sawing lines and keep-out regions on the multi-layer substrate structure for cutting off some portions of the connection structure, the invention can achieve multiple arrangements of power/ground domains without impacting the customer's PCB or system board design so as to cut short the cycle time for engineering development phase.
Abstract:
RFID tags are used for many purpose including tracking. RFID interrogators are used to retrieve information from tags. In many applications, a plurality of RFID interrogators are required. Synchronization between interrogators in the same theatre of operation is critical to ensure that their broadcasts do not interfere with each other. In fixed RFID interrogator applications, RFID interrogators can be wired together allowing a channel to synchronize the transmissions of the RFID interrogators. Methods described herein can ensure that synchronization is maintained in the event of the failure of a synchronizing master. Furthermore, additional methods for synchronizing RFID interrogators in wireless applications are described allowing synchronization in the absence of wired connections between interrogators.
Abstract:
A flexible sheet of light-emitting diode (LED) light emitters includes a support substrate having a thermally conductive material. The flexible sheet of LED light emitters also has an LED emitter sheet overlying the support substrate, and the LED emitter sheet including a plurality of LED light emitters. The flexible sheet of LED light emitters also has a flexible circuit sheet overlying the LED emitter sheet, and a phosphor sheet overlying the flexible circuit sheet. The phosphor sheet includes a wave-length converting material. The flexible sheet of LED light emitters also has a lens sheet overlying the phosphor sheet. The lens sheet includes a plurality of lenses.
Abstract:
A substrate structure having a component-disposing area and a process thereof are provided. The substrate structure having a component-disposing area includes a core layer, a first dielectric-layer, a laser-resistant metallic-pattern and a second dielectric-layer. The core layer includes a first surface, a component-disposing area and a patterned metallic-layer disposed on the first surface and including multiple pads, and the pads are located within the component-disposing area. The first dielectric-layer is disposed on the core layer and includes multiple openings to respectively expose the pads. The laser-resistant metallic-pattern is disposed on the first dielectric-layer and surrounds a projection area of the first dielectric-layer which the component-disposing area is orthogonally projected on. The second dielectric-layer is disposed on the first dielectric-layer and covers the laser-resistant metallic-pattern, the second dielectric-layer includes a component-disposing cavity corresponding to the projection area, penetrating through the second dielectric-layer and communicated with the openings to expose the pads.