Abstract:
A printed circuit board (PCB) and a liquid crystal display (LCD) including the same are provided. The PCB includes a metal pattern formed on an insulating substrate, an insulating layer covering the metal pattern, and at least one insulating layer protecting pattern formed on the insulating layer. The LCD includes a liquid crystal panel, a backlight assembly providing light to the liquid crystal panel, a bottom chassis having at least one support protruding from a surface thereof and receiving the liquid crystal panel and the backlight assembly, and a printed circuit board (PCB) including a metal pattern formed on an insulating substrate, an insulating layer covering the metal pattern, and at least one insulating layer protecting pattern formed on the insulating layer, wherein the printed circuit board is connected to the surface of the bottom chassis.
Abstract:
When a semiconductor chip is mounted on a mount substrate by bonding bumps, bonding failure is caused by misalignment between the bumps. Before a semiconductor chip having a plurality of bumps is mounted on a mount substrate (3) having a plurality of bumps (4) by flip chip bonding, a resist layer (5) having a thickness larger than that of the bumps (4) is formed on the mount substrate (3) with the bumps. By patterning the resist layer (5), projecting guides (5A) of semicircular cross section are formed on the mount substrate (3) so as to protrude near the bumps (4) and from a surface on which the bumps (4) are provided, and to have guide faces (curved faces) pointing toward the bumps (4).
Abstract:
At least a particular part of a strip conductor 2 of a wiring circuit board for mounting, wherein the strip conductor is exposed to form a stripe pattern, so that individual conductor can be connected to electrode E of an electronic component, is covered with a solder resist 3. The particular part is one section in the longitudinal direction of a strip conductor having a long end, which section includes an area overlapping an electrode which is connected to a short end and transferred in parallel in the strip width direction up to the position on the strip conductor having a long end. As a result, a structure capable of suppressing a short circuit between an electrode and a wiring pattern can be afforded to a wiring circuit board, even to an electronic component having an electrode formed in high-density and in a zigzag arrangement pattern, which comprises an area overlapping an electrode.
Abstract:
A film carrier tape for mounting an electronic part includes a film carrier tape comprising an enlongated insulating film having a plurality of wiring patterns formed on a surface of the insulating film, the wiring patterns being made of a conductive metal, wherein the wiring patterns are each independently covered with a solder resist layer except a connecting terminal portion, and the solder resist layer formed on each surface of the wiring patterns is divided into plural sections. Warpage distortion that heretofore occurs on each of a plural film carriers arranged, such as CSP, COF and BGA, provided in a film carrier tape for mounting an electronic part in the width direction of the tape can be reduced.
Abstract:
A method of forming a wiring pattern in a predetermined area on a substrate using a droplet ejection process, including the steps of (a) forming a recess section for disposing a functional fluid in the predetermined area so that the predetermined area has a first region, a second region connected to the first region, and the third region connected to the second region, the second region having a narrower width than the first region and the third region, (b) ejecting to the first region the functional fluid containing a material for the wiring pattern, (c) drying the functional fluid ejected to the first region to form a film, (d) ejecting the functional fluid to the third region, and (e) drying the functional fluid ejected to the third region to form a film.
Abstract:
A method of forming a conductive pattern includes a step of forming a bank on a substrate and a step of applying a lyophobic agent to a part or whole of an upper face of the bank.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A printed circuit board, which is guaranteed to be free of defective soldering in mounting and connecting electric or electronic parts or devices to the printed circuit, has a circuit pattern printed on its substrate, and an anti-soldering layer is laid on the circuit pattern to prevent soldering material from sticking to the circuit pattern and silk-screen printing areas are laid on the anti-soldering layer to indicate where selected electric or electronic parts or devices are to be mounted. Each silk-screen printing area has terminal holes made therein. The board has a substrate-exposed zone traversing the silk-screen printing area to leave its opposite extensions open to the surrounding atmosphere, thereby allowing heated air and gases to escape from the interspace between the bottom of the electric or electronic part or device and the exposed substrate.
Abstract:
The invention provides a method of forming a wiring pattern in which a conductive material layer is formed in a pattern formation region having a first region, which is bordered by a bank pattern and has a first width, and a second region, which touches the first region and has a second width smaller than the first width, on a substrate, by discharging a droplet of a conductive material in a liquid phase using a droplet discharge device. The method includes forming the conductive material layer to cover the first region and the second region, by discharging the droplet having a diameter smaller than the first width and greater than the second width toward the first region. In this case, the droplet is discharged such that the droplet lands at a position that faces a boundary line between the first region and the second region.
Abstract:
Lands formed on a flexible printed circuit board are electrically connected with lands formed on a rigid printed circuit board through solder. At this point, solder resist is formed between neighboring two lands on the rigid printed circuit board, and is terminated with an end portion that is interposed between the rigid printed circuit board and the flexible printed circuit board. Accordingly, even when surplus solder is extruded onto the rigid printed circuit board, the solder resist can prevent solder bridges from being formed between the lands.