Abstract:
A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a liquid hydrotreating effluent stream in a hydrocracking unit. A hot separator separates the diesel in a liquid hot hydrotreating effluent stream that serves as feed to the hydrocracking unit. Low sulfur diesel product can be saturated to further upgrade its cetane rating.
Abstract:
A method for making high density fuels including, heating a renewable plant oil, triglyceride, or fatty acid with at least one first acid catalyst to generate a first mixture of alkyladamantanes, increasing reaction time or adding at least one second catalysts to a first mixture of alkyladamantanes to produce a second alkyladamantane mixture, separating methyl, ethyl, propyl, and/or butyl adamantanes from a second alkyladamantane mixture to produce a third adamantane mixture to produce fuels.
Abstract:
The present invention pertains to a process for refining of crude tall oil (CTO). The process comprises fractionation under vacuum of a refined CTO into at least one stream of refined tall diesel (RTD) or tall oil fatty acids (TOFA), the RTD or TOFA comprises from 2-30% by volume of resin acids and from 20-90% by volume of fatty acids, and at least one stream of resin acid(s) (RA) comprising less than 5% by volume of fatty acids. The stream of RTD or TOFA is deoxygenated forming hydrocarbon compounds in a subsequent step. This invention also relates to a refined tall diesel. Furthermore, a process for the production of a refined tall diesel (RTD) composition, wherein crude sulphate turpentine(s) (CST) is added to the refined tall diesel (RTD) composition, is described.
Abstract:
The present invention provides a fuel comprising a renewable middle distillate composition obtainable by hydrodeoxygenation of a feedstock comprising levulinic acid dimers/oligomers and fractionated distillation. The renewable middle distillate composition contains less than 10.0 wt.-% aromatics.
Abstract:
The present disclosure relates to novel processes for making improved blends of hydrocarbon fuels that provide increased power and a broader operating range when used as fuel for homogeneous charge compression ignition engines.
Abstract:
An integrated process for converting low-value paraffinic materials to high octane gasoline and high-cetane diesel light is disclosed. The process involves: (1) oxidation of an iso-paraffin to alkyl hydroperoxide and alcohol; (2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; (3) converting low-octane, paraffinic gasoline molecules using the dialkyl peroxides as radical initiators, thereby forming high-cetane diesel, while the dialkyl peroxide is converted to an alcohol; (4) converting the alcohol to an olefin; and (5) alkylating the olefin with iso-butane to form high-octane alkylate. The net reaction is thus conversion of iso-paraffin to high-octane gasoline alkylate, and conversion of low-octane paraffinic gasoline to high-cetane diesel.
Abstract:
An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
Abstract:
An enhanced Fischer-Tropsch process for the synthesis of sulfur free, clean burning, green hydrocarbon fuels, examples of which include syndiesel and aviation fuel. Naphtha is destroyed in a hydrogen generator and recycled as feedstock to a syngas (FT) reactor in order to enhance the production of syndiesel from the reactor. A further variation integrates a second hydrogen generator capturing light hydrocarbon gas for conversion to hydrogen and carbon monoxide which supplements the Fischer-Tropsch reactor. The result is a considerable increase in the volume of syndiesel formulated. A system for effecting the process is also characterized in the specification.
Abstract:
An apparatus and a process for providing a green diesel with improved flow properties. A renewable feed comprising an oil is deoxygenated to provide an effluent. The effluent may be isomerized to improve the qualities of the effluent for use as a diesel fuel. Additionally, the effluent may be filtered to increase the fuel flow properties. As filtration zone can be used, which includes a filter and which may be flushed with a portion of the feed stream to the filtration zone or a portion of filtration zone effluent. The wash stream may be heated.
Abstract:
A process allowing the removal of contaminants from an unstable oil such as those produced by thermal or catalytic cracking, wherein, in at least one step of the process, mixing of the unstable oil with a pure or impure solvent having a dipole moment greater than 2 is performed. The stabilized diesels thereby obtained exhibit interesting properties among which significant stability features and are useful in numerous applications, some of these stabilized wide range diesels are new as well as their uses.