Abstract:
Disclosed herein is a dry, self-supporting fibrous material, the fibers of which have been treated with a binder composition. The fibrous material can be slit into tapes or tows that are suitable for use in an Automated Tape Laying (ATL) or Automated Fiber Placement (AFP) process. This fibrous material is suitable for forming preforms which are configured to receive a matrix resin by resin infusion in the manufacturing of structural composite parts.
Abstract:
A curable polymer composition comprising: (A) a thermoset maleimide resin precursor component; and further comprising one or both of: (B) an arylsulphone-containing maleimide component; and (C) a polyarylpolymer thermoplastic toughening agent component, wherein in the absence of component (B), said component (C) comprises one or more maleimide pendant and/or end groups, and thermoset resins and composites derived therefrom.
Abstract:
A method for impregnating a fibrous material with a curable resin to form a prepreg is disclosed. The method includes conveying a web material through at least one moving pressure nip formed between a moving pressure roller and a moving supporting surface, wherein the moving pressure roller and the moving supporting surface travel at different velocities relative to each other resulting in a relative velocity between the web material and the pressure nip. The at least one moving pressure nip travels in the same direction as the web material while applying sufficient pressure to compress the web material and to affect impregnation of the fibrous material with the curable resin. Also disclosed is a system for implementing the disclosed impregnation method.
Abstract:
Peel ply for surface preparation and a method of surface preparation prior to adhesive bonding. A resin-rich peel ply is applied onto a curable, resin-based composite substrate, followed by co-curing. After co-curing, the composite substrate is fully cured but the matrix resin in the peel ply remains partially cured. When the peel ply is removed, a roughened, bondable surface with chemically-active functional groups is revealed. The composite substrate with the chemically-active, bondable surface may be bonded to another composite substrate to form a covalently-bonded structure.
Abstract:
An electrically conductive surfacing material capable of providing sufficient conductivity for lightning strike protection (LSP) and/or electromagnetic interference (EMI) shielding is disclosed. The conductive surfacing material is a multi-layered structure having a very thin conductive layer (e.g. solid metal foil) and a resin film formed on at least one surface of the conductive layer. The resin film is formed from a curable resin composition containing an epoxy novolac resin, a tri-functional or tetra-functional epoxy resin, ceramic microspheres, a latent amine-based curing agent, particulate inorganic fillers; and a toughening component. Optionally, the resin film further includes conductive additives to increase electrical conductivity of the surfacing material. The resin film exhibits high Tg as well as high resistance to paint stripper solutions. Furthermore, the conductive surfacing material is suitable for co-curing with fiber-reinforced resin composite substrates.
Abstract:
Collector compositions C for mineral flotation, which include at least one of a hydroxamic acid A, and/or a salt S of a hydroxamic acid A solubilized in a water-soluble organic solvent L, and processes for using same for recovering sulfide and/or oxide minerals in mineral flotation processes are provided herewith.
Abstract:
A curable resin composition capable of providing good OHC performance at elevated temperatures when used in polymer matrix composites. This resin composition includes, as major components, one or more multifunctional benzoxazine compounds and cycloaliphatic epoxy resin.
Abstract:
A water-based bonding primer composition and a method of applying the same onto a metallic surface prior to adhesive bonding. The bonding primer composition is a water-based dispersion containing water, one or more epoxy resins, one or more curing agents, a silane compound, a low amount of propylene carbonate (PC), and optional additives. The bonding primer composition can form substantially smooth films by spraying, and at the same time, meet environmental regulations and provide high bonding performance.
Abstract:
The present invention relates to low or zero-tack composite materials such as pre-pregs and their use in automated manufacturing, particularly robotic pick and place. The present invention further relates to an automated process for preparing an article, particularly a moulded article, from a fibre-reinforced composition material.The moulded articles prepared by the process described herein are particularly suitable as components for transport applications, and particularly the automotive industry. The automotive components prepared by the present invention are particularly suitable as mid- or high-volume automotive parts, in which cost and speed of production are paramount. The present invention provides a process in which the cutting and handling of pre-preg materials is greatly simplified, providing advantages of efficiency and economy. The lay-up time according to the present invention is significantly reduced, allowing a reduction in the unit cost per component and/or allowing the high volume of component production desired in the automotive industry.
Abstract:
A particulate solid composition comprises a blend of dialkyl sulfosuccinate and a water-soluble polymer. The water-soluble polymer can be a cellulose ether, a polysaccharide, a polyvinyl alcohol homopolymer or copolymer, a polyvinyl pyrrolidone homopolymer or copolymer, a polyvinyl caprolactam polymer or copolymer, a poly(meth)acrylate, a poly(alkylene oxide) graft copolymer, or a combination thereof. The particulate solid composition is free flowing, water-soluble, and dissolves rapidly in water. It can be made by drying a solution of dialkyl sulfosuccinate and a water-soluble polymer. The particulate solid composition can be mixed with organic substances having low water solubility, for example a generic, a biologic, a biosimilar, an excipient, a nutraceutical, a medical diagnostic agent, an agricultural chemical, or a combination thereof, to form water-soluble compositions.