Abstract:
A partial discharge (PD) transducer that includes a PD sensor configured to sense a PD event of an electrical system. At least one light emitting device (LED) is arranged in series with the PD sensor. The LED is configured to receive the electrical sensor signal from the PD sensor and to generate a light signal in response to the electrical sensor signal.
Abstract:
A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
Abstract:
A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
Abstract:
An optical device includes a waveplate sandwiched between first and second polarizers and is arranged to receive light emanating from an object or object image that is in motion relative to the optical device. A detector array includes one or more detector elements and is optically coupled to receive light from the second polarizer. Each detector element of the detector array provides an electrical output signal that varies according to intensity of the light received from the second polarizer. The intensity of the light is a function of relative motion of the object or the object image and the optical device and contains spectral information about an object point of the object.
Abstract:
Spatially modulated light emanating from an object moving along a flow path is used to determine various object characteristics including object length along the flow direction. Light emanating from at least one object moving along in a flow path along a flow direction of a spatial filter is sensed. The intensity of the sensed light is time modulated according to features of the spatial filter. A time varying electrical signal is generated which includes a plurality of pulses in response to the sensed light. Pulse widths of at least some of the pulses are measured at a fraction of a local extremum of the pulses. The length of the object along the flow direction is determined based on the measured pulse widths.
Abstract:
One or more live substances is cultured at a plurality of test locations of a test vessel. The test locations include a thermochromic material and one or more test substances. A spectral shift in light emanating from the thermochromic material of the test locations is detected. The spectral shift occurs in response to an increase or decrease in energy conversion by the live substance. An effect of the one or more test substances on the live substances is determined based on the detected spectral shift.
Abstract:
A nanocalorimeter device includes a substrate having test cells, each test cell comprising a sample location. Each sample location includes a reaction surface suitable for an enthalpic reaction of constituents of liquid droplets, droplet movement and configured to merge the droplets, and a layer of thermochromic material thermally coupled to the reaction surface. The thermochromic material is configured to exhibit a spectral shift in light emanating from the thermochromic material in response to a change in temperature of the merged droplets.
Abstract:
A method and system for using spatially modulated excitation/emission and relative movement between a particle (cell, molecule, aerosol, . . . ) and an excitation/emission pattern are provided. In at least one form, an interference pattern of the excitation light with submicron periodicity perpendicular to the particle flow is used. As the particle moves along the pattern, emission is modulated according to the speed of the particle and the periodicity of the stripe pattern. A single detector, which records the emission over a couple of stripes, can be used. The signal is recorded with a fast detector read-out in order to capture the “blinking” of the particles while they are moving through the excitation pattern. This concept enables light detection with high signal-to-noise ratio and high spatial resolution without the need of expensive and bulky optics.
Abstract:
Approaches for determining the delivery success of a particle, such as a drug particle, are disclosed. A system for monitoring delivery of particles to biological tissue includes a volume, an optical component, a detector, and an analyzer. The volume comprises a space through which a particle can pass in a desired direction. The optical component is configured to provide a measurement light. The detector is positioned to detect light emanating from the particle in response to the measurement light. The detected light is modulated as the particle moves along a detection axis. The detector is configured to generate a time-varying signal in response to the detected light. The analyzer is configured to receive the time-varying signal and determine a delivery success of the particle into a biological tissue based upon characteristics of the time-varying signal.
Abstract:
Sensor material is arranged to interact with input light and to asymmetrically alter a spectral distribution of the input light in response to presence of an external stimulus. A detector is configured to sense the altered input light and to generate at least one electrical signal comprising information about a shift in the centroid of a spectral distribution of the altered input light relative to a centroid of the spectral distribution of the input light.