Abstract:
A lower limb orthotic device includes a thigh link connected to a hip link through a hip joint, a hip torque generator including a hip actuator and a first mechanical transmission mechanism interposed between the thigh link and the hip link, a shank link connected to the thigh link through a knee joint, a knee torque generator including a knee actuator and a second mechanical transmission mechanism interposed between the thigh link and the shank link, and a controller, such as for a common motor and pump connected to the hip and knee torque generators, for regulating relative positions of the various components in order to power a user through a natural walking motion, with the first and second mechanical transmission mechanisms aiding in evening out torque over the ranges of motion, while also increasing the range of motion where the torque generators can produce a non-zero torque.
Abstract:
A brace system includes a medial brace and a lateral brace securable via cross members. Each brace has an upper portion, a lower portion, and a hinge assembly between the upper and lower portion configured to allow translation of the lower portion relative to the upper portion.
Abstract:
A leg locomotion device includes a frame having a leg coupler configured to mount the frame to a user's leg, the frame also includes two frame components movable relative to one another in response to movement of the user's leg, an energy harvesting device coupled to the frame and configured to harvest energy from the movement of the two frame components during a first portion of a stride, an energy storage device coupled to the energy harvesting device, the energy storage device configured to store harvested energy over more than one stride, and an assist device coupled to the frame, coupled to the energy storage device to receive energy therefrom, and configured to move the frame components relative to one another to selectively assist with movement of the user's leg during a second portion of the stride.
Abstract:
A chest compressor includes a piston (14) that moves in downward and upward strokes, with the piston undergoing a smooth reversal at the bottom of the downward stroke. A compression spring such as a wave spring (60), is positioned to engage the piston only near the end of its downward stroke, to smoothly reverse the piston motion, limit downward force on the patient at the end of the stroke, and avoid a downward pulse due to the momentum of the downwardly-moving piston. A stop (90, 92) is latchable in an inward position to allow reduction in the piston stroke by engaging an outward flange (56) on the piston before the piston has moved fully downward.
Abstract:
A suction cup on the end of a piston of a mechanical CPR device can be automatically attached to a patient's torso. The mechanical CPR device can extend the piston until a first position at which the suction cup comes into contact with the patient's torso. The piston can be further extended to cause air to be forced out from an area between the suction cup and the patient's torso until a first threshold is reached. The piston can be retracted until the suction cup is at the first position. The piston can be further retracted from the first position until a second threshold is exceeded. The piston can then be extended to a second point at which the second threshold is no longer exceeded.
Abstract:
A strengthening and rehabilitation exercise apparatus includes a hip joint strengthening and rehabilitation exercise apparatus for strengthening a pelvis, an abdominal region, and a waist through exercise of a lower body symmetrically interlocking with a weight while fixing an upper body in a prone position, a hip joint strengthening and rehabilitation exercise apparatus for strengthening the pelvis, the abdominal region, and the waist through exercise of the upper body interlocking with the weight while fixing the lower body in a sitting position, a waist joint strengthening and rehabilitation exercise apparatus for strengthening the waist and the abdominal region through exercise of the upper body interlocking with the weight while fixing legs and the pelvis in a straight line in a supine position, and a stretching apparatus for performing muscle exercise of a back and shoulders using hands and arms in the sitting position.
Abstract:
Presented herein are various adjustable support apparatus and methods for using the same. The apparatus comprises a cover defining a user-facing surface, at least a portion of the user-facing surface defining a plurality of raised members. The apparatus includes an adjustment mechanism that enables a user to selectively and incrementally increase the pressure exerted by the user-facing surface of the support apparatus and, specifically, the raised members, on the back of the user. In one embodiment, the adjustment mechanism comprises a bladder at least partially enclosed by the cover; and wherein the bladder is structured to be inflated or deflated so as to urge the user-facing surface and plurality of raised members toward or away from the user, respectively, so as to increase or decrease, respectively, the force exerted by the raised members against the user.
Abstract:
A motorized exoskeleton device comprising: at least two segments, where one segment is superior to the other, the exoskeleton device configured to be coupled to a lower extremity of a user. The exoskeleton device further comprising at least two motorized joints for connecting the at least two segments and for providing relative angular movement between the at least two segments; and the motors coupled to the same superior segment of the exoskeleton device.
Abstract:
A grasp assist system includes a glove and sleeve. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. The glove contains a tendon connected at a first end to the digit. The sleeve has an actuator assembly connected to a second end of the tendon and a controller in communication with the sensor. The controller includes a configuration module having selectable operating modes and a processor that calculates a tensile force to apply to the tendon for each of the selectable operating modes to assist the grasping force in a manner that differs for each of the operating modes. A method includes measuring the grasping force, selecting the mode, calculating the tensile force, and applying the tensile force to the tendon using the actuator assembly.
Abstract:
A traction bed includes (a) a frame upon which an individual is supportable, (b) a first single-sided lever arm pivotably coupled to the frame at a location proximate both a first end of the frame and a first side of the frame, wherein the first single-sided lever arm is configured to be coupled to an arm of an individual, (c) a second single-sided lever arm pivotably coupled to the frame at a location proximate both a second end of the frame and the first side of the frame, wherein the second single-sided lever arm is configured to be coupled to a leg of an individual, and (d) a control system operable to direct a force onto each of the single-sided lever arms to pivot the single-sided lever arms relative to the frame, wherein the force directed to the first single-sided lever arm is separately variable from the force directed to the second single-sided lever arm.