Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (UAV) landing gear assembly that includes adjustable landing gear extension that may be extended or contracted so that the body of the UAV is contained in a horizontal plane when the UAV is landed, even on sloping surfaces. For example, when a UAV is landing, the slope of the surface may be determined and the landing gear extensions adjusted based on the slope so that the body of the UAV remains approximately horizontal when the UAV lands and is supported by the landing gear extensions.
Abstract:
This disclosure describes an unmanned aerial vehicle (“UAV”) configured to autonomously deliver items of inventory to various destinations. The UAV may receive inventory information and a destination location and autonomously retrieve the inventory from a location within a materials handling facility, compute a route from the materials handling facility to a destination and travel to the destination to deliver the inventory.
Abstract:
Aspects include a system for transferring a payload between drones. The system includes a first drone having a first member and a first controller, the first member having a first coupling device on one end, the first member being configured to carry a payload, the first controller being configured to change a first altitude and orientation of the first drone. A second drone includes a second member and controller, the second member having a second coupling device on one end, the second member being configured to receive the payload, the second controller being configured to change a second altitude and orientation of the second drone. The controllers cooperate to change at least one of the first and second altitude, and the first and second orientation to operably engage the first coupling device to the second coupling device for transferring the payload from the first member to the second member.
Abstract:
A system for collecting a fluid sample from a machine having a fluid module is provided. The system includes a docking station disposed on the machine. The system also includes a pump selectively disposed in fluid communication with the fluid module of the machine. The pump is configured to draw a fluid from the fluid module. The system further includes an Unmanned Aerial Vehicle (UAV). The UAV is configured to detachably dock onto the docking station. The UAV is also configured to collect the fluid sample from the pump.
Abstract:
Systems and methods using an Unmanned Aerial Vehicle (UAV) to perform physical functions on a cell tower at a cell site include flying the UAV at or near the cell site, wherein the UAV comprises one or more manipulable members; moving the one or more manipulable members when proximate to a location at the cell tower where the physical functions are performed to effectuate the physical functions; and utilizing one or more counterbalancing techniques during the moving ensuring a weight distribution of the UAV remains substantially the same.
Abstract:
Embodiments of the present invention provide an alternative distributed airborne transportation system. In some embodiments, a method for distributed airborne transportation includes: providing an airborne vehicle with a wing and a wing span, having capacity to carry one or more of passengers or cargo; landing of the airborne vehicle near one or more of passengers or cargo and loading at least one of passengers or cargo; taking-off and determining a flight direction for the airborne vehicle; locating at least one other airborne vehicle, which has substantially the same flight direction; and joining at least one other airborne vehicle in flight formation and forming a fleet, in which airborne vehicles fly with the same speed and direction and in which adjacent airborne vehicles are separated by distance of less than 100 wing spans.
Abstract:
Embodiments of unmanned aerial rescue systems are disclosed, which may comprise: a frame or chassis, a landing member, a control system, a propulsion system, a propulsion system support member, a propulsion system orientation mechanism, a rotor shield or protector, a sealed equipment container, a cover or shroud, an equipment carrier, an equipment release mechanism, a navigation system, a sensor system, a sound system, a light system, a data communication system, an emergency equipment system, and a power management system. In some embodiments, a parabolic shroud increases the performance of sensor systems of the unmanned aerial rescue system, such as sound and light systems.
Abstract:
A device is provided. The device includes one or more electric sifters externally mounted to an aircraft and configured to store a payload. Each electric sifter includes a loading port to add the payload and a distribution apparatus to distribute the payload when the aircraft is airborne. The device also includes an uploaded program, configured to control the aircraft and the device. The uploaded program directs the aircraft to land at a designated location in response to a payload of a designated one of the one or more electric sifters reaching a predetermined level. In response to the device receives a command to activate the distribution apparatus, the distribution apparatus distributes the payload from the device.
Abstract:
Methods, devices, systems, and non-transitory process-readable media for evaluating operating conditions of an autonomous aircraft before performing a mission by executing brief near-flight testing maneuvers at a low elevation. A processor of the autonomous aircraft may receive near-flight testing maneuver instructions that indicate a near-flight testing maneuver to be executed by the autonomous aircraft. The processor may control motors to cause the aircraft to execute a near-flight testing maneuver within a testing area, obtain data indicating stability and performance information while executing the near-flight testing maneuvers, and take an action in response to the obtained data. Actions may include adjusting a position of a payload, a weight, or a portion of the aircraft based on the obtained data, and adjusting a flight plan. The near-flight testing maneuvers may include a sequence of moves for testing stability of the aircraft and payload executing a flight path under anticipated flying conditions.
Abstract:
The object of this invention is a method to shoot an object from a flying apparatus. Into an flying apparatus, into certain part of it, like a container that consists at least of a bottom and a shell a spring will be placed, like a push spring that has been loaded in a tense state and that is locked in this position using a fixing organ and further there will be put as an extension of the spring an object to be shot out from the flying apparatus. The fixing organ is thread, metal cord, bar, strip, rope, line, or some combination of these and tension strength (T) is greater than the tension load of the push force (F) to the mentioned fixing organ. the tension strength (T) of the fixing organ is weakened to be less than the mentioned tension load by heating, burning, or melting the mentioned fixing organ by electric energy when the fixing organ breaks, the spring expands into the direction of the object and the push force (F) pushes the object out of the container and off the flying apparatus. The apparatus that is used in the present method is also an object of the invention.