Abstract:
The displacement amount monitoring electrode structure includes a fixed electrode and a movable electrode each having a comb-teeth shape including a base part and electrode fingers extending from the base part in a direction parallel to a substrate. The fixed electrode and the movable electrode face each other such that the electrode fingers are meshed together. The fixed electrode is fixed to the substrate and the movable electrode can be displaced in the direction. The displacement amount monitoring electrode structure monitors a displacement amount of a detection mass to be driven at a target amplitude based on a change amount of a capacitance between the fixed electrode and the movable electrode. A change sensitivity of the change amount of the capacitance with respect to a displacement amount of the movable electrode, becomes larger after the displacement of the movable electrode reaches a target amount corresponding to the target amplitude.
Abstract:
A Micro Electro Mechanical Systems (MEMS) device includes a rotor having first rotor teeth and second rotor teeth formed in at least two layers of silicon-on-insulator (SOI) substrate. Each rotor tooth belonging to the first rotor teeth is formed in a first layer and each rotor tooth belonging of the second rotor teeth is formed in a second layer. A stator includes first stator teeth and second stator teeth formed in at least two layers of SOI substrate. Each stator tooth belonging to the first stator teeth is formed in a first layer and each stator tooth belonging to the second stator teeth is formed in a second layer.
Abstract:
This invention is a novel methodology for precision metrology, sensing, and actuation at the micro- and nano-scale. It is well-suited for micro- and nano-scale because it leverages off the electromechanical benefits of the scale. The invention makes use of electrical measurands of micro- or nano-scale devices to measure and characterize themselves, other devices, and whatever the devices subsequently interact with. By electronically measuring the change in capacitance, change in voltage, and/or resonance frequency of one or more test structures, a multitude of geometric, dynamic, and material properties may be extracted with a much higher accuracy and precision than conventional methods.
Abstract:
A Micro Electro Mechanical Systems (MEMS) device includes a rotor having first rotor teeth and second rotor teeth formed in at least two layers of silicon-on-insulator (SOI) substrate. Each rotor tooth belonging to the first rotor teeth is formed in a first layer and each rotor tooth belonging of the second rotor teeth is formed in a second layer. A stator includes first stator teeth and second stator teeth formed in at least two layers of SOI substrate. Each stator tooth belonging to the first stator teeth is formed in a first layer and each stator tooth belonging to the second stator teeth is formed in a second layer.
Abstract:
A micro-electro-mechanical system (MEMS) actuator assembly includes a mirror and four actuators. Each actuator includes a lever pivotable about a fulcrum axis. The inner end of each lever is coupled to one side of the mirror. Force is applied to one outer end of the levers to move one side of the mirror, which positions the mirror in one of four positions. Force is applied to two outer ends of the levers to move two sides of the mirror, which positions the mirror in one of four additional positions.
Abstract:
A micromechanical component has an outer stator electrode component and an outer actuator electrode component which is connected to a holder via at least one outer spring, an adjustable element being adjustable about a first rotation axis by application of a first voltage between the outer actuator electrode component and the outer stator electrode component, and having an inner stator electrode component and an inner actuator electrode component having a first web with at least one electrode finger disposed thereon, the adjustable element being adjustable about a second rotation axis by application of a second voltage between the at least one electrode finger of the inner actuator electrode component and the inner stator electrode component, and the inner actuator electrode component being connected to the outer actuator electrode component via an intermediate spring which is oriented along the second rotation axis. Also described is a production method for a micromechanical component.
Abstract:
A micromechanical assembly having a mounting, at least one stator electrode comb, which is fixedly placed on the mounting, having at least two stator electrode fingers, whose central longitudinal axes are on a central plane of the stator electrode comb, at least one actuator electrode comb having at least two actuator electrode fingers, and a displaceable component, which is coupled to the at least one actuator electrode comb so that the displaceable component is displaceable in relation to the mounting at least in one first displacement direction using a nonzero operating voltage, which is applied between the at least two stator electrode fingers and the at least two actuator electrode fingers, the first displacement direction having one first nonzero directional component perpendicular to the central plane.
Abstract:
To provide a semiconductor device prevented from giving a limitation on the sensitivity of HEMS devices due to isolation regions thereof and a method of fabricating the same. The semiconductor device includes: a semiconductor substrate with a recess portion formed in an upper surface; a supporting body provided around the recess portion on the semiconductor substrate; a beam-type movable portion which includes a movable electrode provided above the recess portion and is fixed to the supporting body at a position away from the movable electrode; a beam-type fixed electrode provided above the recess portion to be opposed to the movable electrode and fixed to the supporting body; and isolation regions each including a separation column made of a semiconductor and a separation insulating film provided on a side surface of the separation column, the isolation regions being provided between the movable electrode and the supporting body and between the fixed electrode and the supporting body to electrically separate the movable and fixed electrodes from the supporting body.
Abstract:
The present invention is directed to a bi-axial pivoting type actuator having a first movable section, a second movable section supporting the first movable section, and backlining. A first conductive portion and a second conductive portion for independently applying a driving voltage to each of the first movable section and the second movable section are provided on the second movable section, in a state of being split by isolation trenches and being stabilized by the backlining provided under the second movable section. By providing such backlining, mutual stabilization of the first conductive portion and the second conductive portion in an electrically isolated state, and simplification of the production steps for the actuator are realized. By providing a mirror on the first conductive portion of the actuator of the present invention as such, it becomes possible to provide a bi-axial pivoting type mirror device through a simple production process.
Abstract:
A micro-electro-mechanical system (MEMS) micro mirror and a method of making the same. The micro mirror includes a body having a mirror support, opposed anchor s and flexible hinges which connect the mirror support to the anchor s. The mirror support has opposed comb edges with comb fingers. Electrodes, which have comb fingers to interact with the comb fingers of the mirror support, are spaced from the comb edges. The comb fingers along each of the comb edges of the mirror support surface are positioned on different horizontal planes from and the comb fingers on the electrodes so as to maximize electrostatic actuation.