Abstract:
An ultraviolet (UV) reactor for carrying out chemical reactions in a pumpable medium by means of UV. The pumpable medium may also be, where appropriate, a multi-phase medium. The UV reactor has a reactor chamber through which the medium can flow In a direction of flow from an inlet to an outlet. The reactor chamber is penetrated by a number of UV transparent jacket tubes, which are arranged one behind the other in the direction of flow. UV emitters are arranged within the jacket tubes for emitting UV radiation into the reactor chamber. The jacket tubes are arranged one behind the other and are interlocked against one another at an angle αin the circumferential direction of the reactor chamber.
Abstract:
A method and apparatus for sanitizing a water dispenser that dispenses water for human consumption is disclosed. The dispenser can be in the form of any dispenser that dispenses water for human consumption employing a reservoir that dispenses water through one or more spigots. Water in the reservoir is sanitized with an air/ozone gas mixture that is transmitted to a porous polymeric diffuser having a central bore and a porous wall. The porosity of the porous wall defines bubble size.
Abstract:
An apparatus for a programmable self sanitizing water dispenser apparatus with a digital controller as well as a programmable method for generating ozone for cleaning the reservoir and the water contained within it. The apparatus includes an anti-spill receiver that houses the controller and that can contain a ozone generator.
Abstract:
The present invention relates to an integral system for treating the water for cooling towers and other processes such as reverse osmosis rejection, regeneration of the anionic units of demineralization systems, aircraft blue water and wastewater, in which it is desired to reduce and/or eliminate contaminants such as silica, total, of calcium and magnesium hardness, suspended solids, organic matter and microorganisms, heavy metals, detergents or arsenic, for obtaining a water quality that enables it to be reused in different industrial processes, generating savings in terms of water and chemicals. The system is characterized in that the water to be treated passes through an electrochemical cell with plates of aluminium, iron or some other metal, and, when an electric current is applied at an amperage that allows an optimum current density to yield the aluminium required to form a hydroxide of aluminium, iron or some other metal, which, when re-acting with the contaminants present in the water to be treated, forms an iodine that is later separated out from the water, enabling the treated water to be reused by this system, by integrating the processes of filtration and ozonization it enables better water quality to be obtained for reuse in cooling towers, industrial processes, general services, irrigation of green areas or any other use. The technological innovation in the present invention is that it totally eliminates the silica present in industrial water, allowing reuse of this water in different processes owing to the quality obtained. In addition to reducing the calcium and magnesium hardness salt concentration, preventing the formation of encrustations and, in cooling-tower systems, making it possible to increase concentration cycles, thereby generating savings of water and chemicals, it reduces microbiological proliferation, which will enable industry in general to replace conventional industrial water-treatment programmes with this new technological alternative. The advantages and benefits of the present invention are that it allows reuse and recycling of 100% of the water that has to be discarded in cooling towers, reverse osmosis rejection, regeneration of the anionic units of demineralization systems and wastewater from industry, generating financial savings by allowing reuse of the water that it is currently necessary to discard, thereby reducing the quantity of required chemicals essential for cooling towers and wastewater, reducing the impact on the environment caused by water being discarded with a contaminants and chemicals content that makes it impossible for it to be reused. Furthermore, it allows the elimination of the contaminants present in the water from wells that contain contaminants such as arsenic, cyanide, iron, manganese and microorganisms, enabling the water to be used for drinking.
Abstract:
Disclosed is a process for reclamation of waste fluids. A conditioning container is employed for receipt of waste material on a continuous flow for treatment within the container by immersible transducers producing ultrasonic acoustic waves in combination with a high level of injected ozone. The treated material exhibits superior separation properties for delivery into a centrifuge for enhanced solid waste removal. The invention discloses a cost efficient and environmentally friendly process and apparatus for cleaning and recycling of flowback, or frac water, which has been used to stimulate gas production from shale formations. The apparatus is mobile and containerized and suitable for installation at the well site.
Abstract:
An apparatus for a programmable self sanitizing water dispenser apparatus with a digital computer as well as a programmable method for generating ozone for cleaning the reservoir and the water contained within it.
Abstract:
A practical treatment apparatus for ship ballast water, which can kill aquatic organisms contained in the ballast water, is provided by being easily incorporated in an existing ballast-water system piping in a ship. In a branch pipe 131 branched from the existing ballast-water system piping for taking in the ballast water into the ship by a first ballast pump 4 with high flow-rate/low pressure and transferring it to a ballast tank 2, an ozone mixing device for mixing ozone generated by an ozone generator, a second ballast pump 134 for discharging said ballast water with lower flow-rate/high pressure than those of said first ballast pump, a slit plate 135 provided on the secondary side of said second ballast pump 134 and having a plurality of slit-shaped openings for passing said ballast water, and a deaeration tank 136 for deaerating undissolved ozone from the ballast water are provided, and the apparatus is configured so that the ballast water after deaeration discharged from said deaeration tank 136 is returned to said ballast-water system piping.
Abstract:
An ozonation system may include a mixing chamber having an inlet to a recirculation conduit within the chamber and proximate to its top, a recirculation conduit for withdrawing fluid from the mixing chamber through the inlet and conducting it to a pump, a venturi connected to the outfeed of the pump for induction of ozone into the water, an infeed for reintroducing a water-ozone mixture back into the chamber, the infeed terminating in a restricting nozzle.
Abstract:
A fluid purification device capable of exerting high disinfection/purification functions by a simple structure is provided, and a fluid purification device capable of suppressing, for example, generation of noise and high-voltage charging upon disinfection/purification of a fluid to be treated composed of liquid such as water is provided.This is a fluid purification device, wherein an inner tube composed of a non-conductive material and an outer tube which is spaced apart from the inner tube by predetermined space S and composed of a non-conductive material are concentrically provided, and a conductive member is attached to a part or entire periphery of the inside of the outer tube to provide an electrode so as to form a device main body; and the fluid purification device has a liquid purification function which, when a voltage is applied to the electrode of the device main body, performs discharge in the space S by using a fluid to be treated W composed of liquid such as water which flows within the inner tube as an earth electrode so as to cause a gas such as oxygen or air flowing in the space S to be reacted to generate ozone and mixes the ozone with the fluid to be treated W so as to purify the fluid.
Abstract:
A method of wastewater reutilization by which reusable water can be stably obtained from a wastewater. Ozone is added to a wastewater, such as water resulting from sewage treatment, in such a small amount as to result in a residual ozone concentration as measured before membrane filtration of 0.01-1.0 mg/L. Ozone is thus brought into contact with fine solids contained in the wastewater to alter the surface properties of the fine solids so that the solids are easily to coagulate. Thereafter, a coagulant, e.g., PACl, is added from a coagulant addition device(3). The fine solids are coagulated in a coagulation tank(5) or a line mixer and the resultant water is subjected to membrane filtration with an ozone-resistant separation membrane(6) such as ceramic membrane. Thus, reusable water is obtained which has a residual ozone concentration, as measured after filtration through the membrane, less than 0.5 mg/L.