Abstract:
In a glass cloth made of glass filaments having a composition which is at least 50 wt % SiO2, the filaments have a diameter that is 0.5 μm or more and less than 3.0 μm. The glass cloth has a thickness of 15 μm or less and a weight of from 0.3 to 10 g/m2.
Abstract:
A quartz glass plate has a quartz glass plate body and a quartz glass member adhered to the quartz glass plate body through an adhesive layer, where the adhesive layer contains silica, and a sum of concentrations of Li, Na, and K ions, being alkali metal ions and Ca ions, being alkaline earth metal ions contained in the adhesive layer is 10 ppm by mass or less. Consequently, a step with a uniform thickness can be formed, and a quartz glass plate is not easily damaged by irradiation with a light containing an ultraviolet ray.
Abstract:
The present invention relates to a black quartz glass comprising Si of 0.5 to 10 mass %, SiO of 0.1 to 5 mass % and SiO2 of the residue, wherein the SCE reflectance at a wavelength of 350 nm to 750 nm is 10% or less; a method for producing the black quartz glass, comprising: pressure-molding a powder obtained by mixing and consolidating (1) fumed silica, or (2) a mixture powder of fumed silica and a synthetic silica powder, or (3) a mixture powder of fumed silica, spherical silica and a synthetic silica powder, with a Si powder of 0.5 to 10 mass % and a SiO powder of 0.1 to 5 mass %, and heating and sintering the pressure-molded product in the atmosphere; and a product comprising a black quartz glass member made of the black quartz glass. The present invention allows to provide a black quartz glass which has an excellent light-shielding property, has no risk of causing contamination in a step of using it, has sufficient color uniformity when the size is enlarged, and is capable of producing a large ingot, and to provide a method for producing the black quartz glass with excellent productivity even in the large ingot, and to provide a black quartz glass product made of the black quartz glass.
Abstract:
A method of manufacturing a scintillator material includes providing a substrate made of a quartz glass and having a recess formed therein; filling the recess with a raw material powder obtained by mixing an iodide raw material and SiO2 fine particles; after filling the recess, disposing a lid on the substrate to cover the recess; and after disposing the lid, heating the substrate, thereby forming a nanocomposite layer in which an iodide phosphor is introduced into a cristobalite structure.
Abstract:
A quartz glass container is shown and described herein. The quartz glass container exhibits a low concentration of surface defects on an inner surface of the container. In aspects hereof, the container may have a surface defect density of 50 or fewer surface defects per square centimeter within a 1 cm band centered 1 cm from the base of the container.
Abstract:
A quartz container manufacturing method and a forming apparatus, relating to the solar photovoltaic technical field, and providing a mold comprising a top cylinder and a mold bottom; during formation of a container blank, when the mold forms a first included angle with a horizontal plane and the mold is rotated at a first rotation speed, the source material forms a first blank on the inner wall of the top cylinder; when the mold forms a second included angle with the horizontal plane and the mold is rotated at a second rotation speed, the source material forms a second blank on the inner wall of the mold bottom; a quartz container is manufactured from a container blank composed of the first blank and the second blank.
Abstract:
Embodiments of the invention relate to a hydrogen-resistant optical fiber with a core having a central axis. The core may include only silica, or only silica and fluorine, while a cladding region surrounding the core may be made of silica and fluorine, along with at least one of germanium, phosphorus, and titanium.
Abstract:
Provided is a filler powder that has a lower coefficient of thermal expansion than silica powder and is less likely to cause quality and color alteration of a resin when blended into the resin. The filler powder is made of a crystallized glass in which β-quartz solid solution and/or β-eucryptite is precipitated. The filler powder preferably has an average particle size D50 of 5 μm or less. The filler powder preferably has a coefficient of thermal expansion of 5×10−7/° C. or less in a range of 30 to 150° C.
Abstract:
Microspheres, typically sterile, inert, silica glass microspheres, are dispersed in a carrier suitable for use relative to the object to be imaged and analyzed. In the case of ophthalmic imaging, an ophthalmically-acceptable gel is used and the resulting composition is dispensed into a mammalian eye. The gel and microspheres dispersed therein coat and conform to the surface of the eye. The microspheres enhance reflectance from the eye which improves signal-to-noise ratio and improves imaging quality.
Abstract:
A single-crystal silicon pulling silica container including: a transparent silica glass layer in the inner side of the silica container; and an opaque silica glass layer containing gaseous bubbles in the outer side of the silica container, wherein the transparent layer constitutes of a high-OH group layer placed on an inner surface side of the silica container containing the OH group at a concentration of 200 to 2000 ppm by mass and a low-OH group layer having the OH group concentration lower than the high-OH group layer containing Ba at a concentration of 50 to 2000 ppm by mass. Resulting in the silica container used for pulling single-crystal silicon, providing the silica container improves etching corrosion resistance of the container inner surface to silicon melt when the entire inner surface of transparent silica glass of the container is crystallized short after using the container and method for such silica container.