Abstract:
Described herein are modified fuels with improved properties. The modified fuels are more efficient when compared to conventional fuels such as gasoline. Additionally, the modified fuels burn more efficiently and produce fewer emissions. Finally, the modified fuels also do not require any modifications to existing engines.
Abstract:
A fuel additive to gasoline and diesel fuels which when added in small quantities relative to total volume of fuel treated and burned as fuel in an internal combustion engine, enhances fuel burning to concurrently increase mileage and reduce emissions. The fuel additive is formed of a plurality of individual components having individual and a combined synergistic effect along a liquid fuel-soluble carrier and added to the fuel supply of the intended internal combustion engine.
Abstract:
A method is taught to alleviate some of the expected seawater corrosion of aluminum alloy fuel tanks originating from the chlorides present in seawater through the use of a dicarboxylic acid additive that is added to the aluminum alloy fuel tank when seawater enters the tank.
Abstract:
A diesel fuel additive and synthesis method therefore is disclosed herein. The diesel fuel additive may be used in internal combustion engines including those present in cars and trucks, and reduces fuel consumption and pollutant emissions while increasing power.
Abstract:
A fuel additive to gasoline and diesel fuels which when added in small quantities relative to total volume of fuel treated and burned as fuel in an internal combustion engine, enhances fuel burning to concurrently increase mileage and reduce emissions. The fuel additive is formed of a plurality of individual components having individual and a combined synergistic effect along a liquid fuel-soluble carrier and added to the fuel supply of the intended internal combustion engine.
Abstract:
The present invention relates to an unleaded aminated aviation gasoline of high motor octane number (MON) and low toluene insoluble deposit formation containing an additive for controlling said deposits selected from the group consisting of high molecular weight hydrocarbyl amines, high molecular weight hydrocarbyl succinimide, high molecular weight hydrocarbyl substituted Mannish bases, and mixtures thereof, and optional carrier oil(s), to an additive concentrate for controlling toluene insoluble deposits, and to a method for producing the additive concentrate.
Abstract:
A method of operating a turbo charged diesel engine is provided where a viscosity increasing component in a diesel fuel composition is used, to improve the acceleration performance, at low engine speeds (for example up to 2200 rpm). This method may be used for reducing the engine speed at which the turbo charger reaches its maximum speed when accelerating at low engine speeds, or reducing the time taken for the turbo charger to reach its maximum speed. It may mitigate a deterioration in the acceleration performance of the engine due to another cause. The VK 40 of the resultant fuel composition is suitably 2.8 mm2/s (centistokes) or greater. The viscosity increasing component may in particular be a Fischer-Tropsch derived fuel component, an oil or a fatty acid alkyl ester. A density increasing component may be used in the fuel composition together with the viscosity increasing component.
Abstract:
The present invention relates to gasoline or a gasoline and ethanol blend fuel compositions that have improved oxidation stability. More specifically, the gasoline or a gasoline and ethanol blend fuel compositions include at least one antioxidant that increases the oxidative stability of the fuel. The gasoline or a gasoline and ethanol blend fuel compositions may also include an antioxidant mixture, or an antioxidant mixture in combination with a polar and/or nonpolar solvent, that increases the oxidative stability of the fuel.
Abstract:
The present application relates to deposit control additive composition comprising of Mannich base and Polyisobutylene amine (PIBA) having average molecular weight of 800 as a synergistic component of deposit control additive formulation. The application also relates to deposit control additive composition comprising further components such as fluidizer oil, dehazer, corrosion inhibitor and solvent to obtain deposit control additive formulation and mixed with gasoline fuel to obtain fuel composition. The application further relates to a process for the preparation of fuel composition by blending at an ambient temperature gasoline fuel and deposit control additive composition obtained by blending in a suitable container Mannich base, Polyisobutylene amine (PIBA), fluidizer oil, dehazer, corrosion inhibitor and solvent at a temperature ranging between 50° C. to 60° C. for a time period of up to 2 hours.
Abstract:
A polymeric surfactant obtained by the reaction of: (i) a polyolefin oligomer functionalized with at least one group deriving from a dicarboxylic acid, or a derivative thereof; and (ii) a polyoxyalkylene of linear oxyalkylene units. The polyoxyalkylene is linked to a long-chain alkyl group optionally containing one or more ethylenic unsaturations. The polymeric surfactant may be utilized to stabilize a fuel of an emulsion between water and a liquid hydrocarbon. The fuel has high stability over time, without forming carbonaceous deposits which adhere to metal surfaces.