Abstract:
There is described an optical radiation sensor device for detecting radiation in a radiation field. The device comprises a sensor element capable of detecting and responding to incident radiation from the radiation field and a radiation window interposed between the sensor element and the radiation field. The radiation window comprises a non-circular (preferably square) shaped radiation transparent opening. The optical radiation sensor device can be used in a so-called dynamic manner while mitigating or obviating the detection errors resulting from the use of a circular-shaped attenuating aperture and/or angular (even minor) misalignment of the sensor device with respect to the array of radiation sources when multiple such circular-shaped attenuating apertures are used.
Abstract:
There is disclosed a process for measuring transmittance of a fluid in a radiation field comprising polychromatic radiation—i.e., radiation at a first wavelength and radiation at a second wavelength different from the first wavelength. The process comprises the steps of: (i) positioning a polychromatic radiation source and a polychromatic radiation sensor element in a spaced relationship to define a first thickness of fluid in the radiation field; (ii) detecting a first radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the first thickness; (iii) detecting a second radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the first thickness; (iv) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the second thickness; (vi) detecting a fourth radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the second thickness; and (vii) calculating radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and the fourth radiation intensity. Thus, the present process relates to a novel manner to measure UV transmittance of a fluid in an on-line or random measurement manner.
Abstract:
A laminated wafer sensor structure includes a housing layer having pocket openings formed therein, a circuit layer having a sensor element and electronic components mounted for registration with the pocket openings in the housing layer, and a rigid back layer. The laminated structure is suitable for handling by conventional robotic wafer handling systems. The wafer sensor structure is adapted for electrical connection to a base station that is also adapted for connection to a host computer system to facilitate communication among the sensor structure, the base station and the host computer.
Abstract:
A photometric apparatus which includes a cover that houses a UV light source and a photodetector, the cover hermetically sealing an entire light path extending from the light source to the photodetector therewithin; device for replacing an internal atmosphere of the cover with nitrogen gas; and a window plate unit which is adapted to be readily attached to and detached from a partition wall between a light source chamber and a spectral chamber located in a subsequent stage thereof. The window plate unit blocks gaseous communication between the light source chamber and the spectral chamber while allowing measurement light to be transmitted therethrough.
Abstract:
A wavemeter and method for measuring bandwidth for a high repetition rate gas discharge laser having an output laser bean comprising a pulsed output of greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having a femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at pulse repetition rates of 4000 Hz and above, is disclosed which may comprise a focusing lens having a focal length; an optical interferometer creating an interference fringe pattern; an optical detection means positioned at the focal length from the focusing lens; and a bandwidth calculator calculating bandwidth from the position of interference fringes in the interference fringe pattern incident on the optical detection means, defining a DID and a DOD, the respective distances between a pair of first fringe borders and between a pair of second fringe borders in the interference pattern on an axis of the interference pattern, and according to the formula Δλ=λ0[DOD2−DID2]/[8f2−D02], where λ0 is an assumed constant wavelength and D0=(DOD−DID)/2, and f is the focal length. The optical detector may be a photodiode array. The wavemeter may have an optical interferometer having a slit function; the slit function and the focal length being selected to deliver to the optical detector the two innermost fringes of the optical interference ring pattern. The optical detector may comprise an array of pixels each having a height and width and the array having a total width; and an aperture at the optical input to the optical interferometer may selectively input to the optical interferometer a portion of a beam of light sufficient for the output of the etalon to illuminate the optical detector over the height of each respective pixel height and the total width. The optical interferometer may comprise an etalon having a slit function of 3 pm or less and a finesses of 25 or greater; and the focal length may be 1.5 meters. A second stage diffuser may be placed between the first stage diffuser and the etalon delivering a narrow cone of light to the etalon, and an aperture between the second stage diffuser and the etalon may deliver to the etalon a thin strip of the narrow cone of light.
Abstract:
A dosing film for measuring ultraviolet rays and/or electron beams, formed of a radiation-sensitive layer having covering films on both sides.
Abstract:
An apparatus for quantifying irradiance has a first sensor having an output for providing a reference signal of irradiance within a first band, such as the visible light band. A filter and a second sensor are in optical series so that irradiance sensed at the second sensor is filtered. The second sensor outputs a filtered signal of irradiance within the first band. The filter particularly filters irradiance in the first band as a function of irradiance in the second band, such as the UV light band. In an exemplary embodiment, the filter is made from a material that darkens with increasing UV irradiance. A processor has inputs coupled to the outputs of the first and second sensors for determining irradiance in the second band from the reference signal and the filtered signal. Mathematical formulations for the processor are provided, as are methods and a computer program embodied on a medium. A single sensor embodiment is also described.
Abstract:
A UV sensor (1) includes a container (5) in which the upper end opening of a metal side tube (2) is sealed with a front plate (3) composed of borosilicate glass as an incident light window and the lower end opening is sealed with a base plate (4). The front plate (3) serving as an incident light window constitutes part of the wall of container (5) by sealing the upper end opening of the metal side tube (2). A pin-type photodiode (6) is disposed inside the container (5). The pin-type photodiode (6) comprises a photoabsorption layer (9) formed from InxGa(1−x)N (0
Abstract:
A radiometer that incorporates multiple UV bandwidth sensors, defined in nanometers, and includes connectors for inserting a cable that is used to connect to another sensor, or to a data collection module (DCM) in a multidrop, or daisy-chain arrangement. Each sensor can be positioned at any point on a three-dimensional work piece, and will receive UV energy at the aperture having an optical component. The collected energy is directed to a detector in the sensor. A processor in the body of the sensor then computes the amount of UV radiation based on signals from the detector. This information is transferred to and stored in a data collection module to which the sensor string is connected. Data stored in the DCM can then be transferred to a computer for display purposes. The sensors and DCM can be tethered to the computer for real-time measurement readings when adjusting the UV lamps.
Abstract:
A system is disclosed that is using a high energy point like source illuminator comprising an ultraviolet source, where the source is being energized by a variable power supply that is controlled by a UV sensor and microprocessor. The energy from the illuminator is focused in the proximal end of a fiber optic light guide, a feed back branch coupling reflected light to the UV sensor. The light travels inside the guide and exits through its distal end first exposing a standard substrate. The standard substrate and a working substrate are positioned adjacent to each other and the UV light is first directed toward the standard substrate, the reflected light being incident on the sensor. The sensor output signal is then coupled to the microprocessor, which adjusts the power delivered to the bulb to correspond to the value established for the standard substrate, the microprocessor determining the needed exposure time to affect the cure. Thereafter, the incident light is redirected toward the working substrate, the reflected light therefrom being sensed, the microprocessor then adjusting the power supply such as to keep the bulb light intensity constant in accordance with the parameters established by the standard measurements.