Abstract:
A method is provided of determining a device spectral response for an image recording device. The method comprises obtaining a filtered light response from a number of filters of a filter set, wherein each filter has a pass band with at least one boundary defined by a transition region. In the wavelength region of interest adjacent transition regions of the same sense are substantially non-overlapping. The obtained filtered light response for each filter is stored as response data. The device spectral response is determined using the stored response data and separately determined data describing the spectral response of the number of filters.
Abstract:
The calibration of an imaging system having a camera (20) for capturing colour data for a target object (carcass 10) includes a primary calibration to obtain a primary transform for RGB data to enable compensation for variations in the camera operation or characteristics, and a secondary calibration obtain a secondary transform to enable compensation for local lighting conditions during capture and processing of colour data for captured images to be analysed. The calculated primary transform relates the actual measured colour data to known standard colour data for the particular standard colour specimens (31). The standard colour specimens (31) are presented in an enclosure or hood (30) to the camera under controlled illumination and with extrancous or external light being excluded from illuminating the specimens. A preliminary calibration includes calibrating the primary calibration standard colour specimens and associated controlled light source against centralised laboratory standard colours.
Abstract:
A color spectrophotometer incorporating a low cost commercial imaging chip, which normally forms part of a document imaging bar used for imaging documents in scanners, etc., having multiple photo-sites with three different rows of color filters. Each chip is mounted on the optical axis of an imaging lens system, in the image plane of that lens system, to image the reflected illumination from an illuminated color test target area on the chip. The optical axis of the imaging lens system is oriented at 45° to the illuminated color test patches, and the photodetector chip is physically mounted perpendicular to the plane of the illuminated color test patches. Respective photo-sensor chips and associated 1:1 optics may be mounted on opposing sides of the spectrophotometer physically oriented at 90° to the test target area plane receiving the reflected light from the test target optically oriented at 45° to the illuminated test target.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics are apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base.
Abstract:
An LED-based spectrophotometer uses a reconstruction algorithm, based on spectral information of an illumination source and a reference spectrophotometer, to convert integrated multiple illuminant measurements from a non-fully illuminant populated color sensor into a fully populated spectral curve using a reference database. A non-linear model, such as a fuzzy inference system (FIS), is used to reconstruct spectra.
Abstract:
A low cost yet higher speed color spectrophotometer, especially suitable for on-line color printer color control systems, wherein multiple test patches of different colors may be simultaneously illuminated and substantially simultaneously discretely color analyzed. Reduced numbers of test print sheets, with multiple sets of multiple small adjacent different color test patches, may be used. Reflected images of the multiple different color test patches may be simultaneously focused on different areas of a photodetector chip to expose differently color responsive sets of multiple photo-sites to provide plural discrete color signals for each different color test patch image.
Abstract:
A method for maintaining substantial reliability of color measurements obtained by a number of color measuring instruments includes by measuring color values of a set of master color standards on a master color measuring instrument at a master color lab, and measuring color values of sets of working color standards on the same instrument to determine calibration values. The working sets are provided to remote locations for use on remote color measuring instruments and the working sets are measured on the remote color measuring instruments to obtain color value measurements which are transmitted to the master color lab. The measurements from the remote instruments are compared with the calibration values obtained from measurements on the master instrument to generate profiles which are provided to the remote color labs. The profiles are applied to measured color values for the set of working color standards to obtain corrected color values. These values are transmitted to the master color lab and analyzed to determine compliance with specifications as to permissible deviations.
Abstract:
By using a reconstruction algorithm, based on the spectral characteristics of the illumination source and a color sensing system, a spectral curve reconstruction device converts measurements from a non-fully illuminant populated color sensor into a fully populated spectral curve. This is done using a spectral measurement system model, which may use basis vectors.
Abstract:
A two dimensional color pattern which at each point has a definite and unique color value is reproduced on a measurement surface by way of a computer controlled display device for the optical marking of a target region on the measurement surface captured by a color measuring device. The color measuring device is aimed at the measurement surface and the color value of the target region captured by the color measuring device is measured. The coordinates of the target region on the measurement surface are calculated from the measured color value and an optical marker which visually indicates the location of the target region on the measurement surface is reproduced at that location on the measurement surface as defined by the calculated coordinates of the target region. Alignment of the color measurement device is simplified and made possible without the need for laser pointers or cameras.
Abstract:
A portable color measuring device for determining a color of an object, is disclosed. The color measuring device is useful for measuring and analyzing an object's color in the visible light range. The devices also allow users with little training in color analysis to quickly and consistently perform accurate color measurements.