Abstract:
A laser scanning type observation apparatus includes a pulsed-laser oscillation means irradiating pulsed laser to an object, a detector receiving light from the object to output a detection signal, a means detecting pulsed-laser oscillation to output a synchronous signal, a circuit delaying the synchronous signal for an optional amount of time to output a trigger signal, a means sampling the detection signal in synchronization with the trigger signal, a memory storing the sampled detection signal, a setting unit capable of setting delay time for delaying the synchronous signal in two or more stages within one period of the synchronous signal, and a decision unit determining an optimum delay stage for image formation using data on intensities of the detection signal at the respective delay stages, wherein the setting means fixes delay time for delaying the synchronous signal at delay time corresponding to the delay stage determined by the decision unit.
Abstract:
To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
Abstract:
The invention relates to a contamination recording apparatus (12) for recording contaminations in a flowing hydraulic fluid (10) to be examined in aircraft (11a), which comprises a conveying device (14) for conveying the flowing hydraulic fluid (10), a light source (34) for exposing the hydraulic fluid (10) flowing in the conveying device (14) to light (46), and a detection device (36) for recording a fraction of the light (46) absorbed by the exposed hydraulic fluid (10), the light source (34) being formed in order to emit light (46) having a wavelength in the near-infrared range. The invention furthermore relates to a hydraulic system (11) equipped with such a contamination recording apparatus (12) and to an aircraft (11a), and also to a method for recording contaminations in a hydraulic fluid (10) flowing in a hydraulic system (11) of an aircraft (11a).
Abstract:
An object of the present invention is to provide an optical inspection apparatus that suppresses an influence of quantum noise and obtains superior defect detection performance even when an amount of light is small and a method thereof.In order to resolve the above problem, the present invention provides an optical inspection apparatus that includes a light source which radiates light to a sample; a light interference device which causes target light transmitted, scattered, or reflected from the sample and reference light to interfere with each other, such that strength of light after the interference becomes lower than strength of the target light; a photon counter which measures a photon number of the light after the interference by the light interference device; and a defect identifier which identifies the presence or absence of a defect, on the basis of a detected photon number obtained by the photon counter.
Abstract:
The present invention relates to a method for determining at least one gas condition at a location in a combustion chamber of a power plant or a combined heat and power plant by means of a laser pulse. The method comprises emitting (S1) the laser pulse into the chamber, determining (S2) a first point of time at which the laser pulse is emitted into the chamber, detecting (S3) laser light backscattered by gas molecules at the location in the chamber, determining (S4) a second point of time at which the laser light backscattered by the gas molecules is detected, determining (S5) the location based on the first point of time, the second point of time, and a pulse length of the laser pulse, and determining (S5) the at least one gas condition at the location based on at least one characteristic of the backscattered laser light detected at the second point of time. A gas measurement system and a combustion system are also presented herein.
Abstract:
An optical pulse source for generating optical supercontinuum pulses comprises an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating optical supercontinuum pulses; an optical modulator operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate optical supercontinuum pulses at a selectable and lower repetition rate; an optical fiber amplifier located between the optical modulator and the optical pump laser; wherein the optical supercontinuum pulses generated by the optical fiber have a supercontinuum spanning from below 450 nm to greater than 2000 nm; wherein the optical pulse source is provided with a microprocessor configured to determine when supercontinuum pulses are delivered; and wherein the optical pulse source is configured to provide an output trigger signal.
Abstract:
Optical pulse source for generating optical supercontinuum pulses, comprising an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising a microstructured optical fiber arranged to receive the optical pump pulses and configured to spectrally broaden the pump pulses to generate optical supercontinuum pulses; an optical modulator provided between the optical pump laser and the microstructured optical fiber and operable to selectively control the launch of pump pulses into the microstructured optical fiber at a variable, reduced repetition rate Rr=Rf/N, wherein N is a positive integer, to thereby control the repetition rate of optical supercontinuum pulses generated within the nonlinear element; and wherein the optical pulse source is configured to provide a plurality of different repetition rates and nominally identical spectral broadening for the different repetition rates.
Abstract:
The invention relates to an optical arrangement (20) and to a method of examining or processing an object (46). Here, a first laser pulse with a first central wavelength and a second laser pulse with a second central wavelength different from the first central wavelength are generated. Both pulses are superimposed in or on the object (46) such that multi-photon absorption takes place there with the involvement of at least one photon of the first laser pulse and at least one photon of the second laser pulse.
Abstract:
The present invention relates to a method for measuring the lifetime of an excited state in a sample, in particular a fluorescence lifetime, and to an apparatus for carrying out such a method. First, an excitation pulse is generated and a sample region is illuminated with the excitation pulse. Then, a first digital data sequence is generated which is representative of the power-time profile of the excitation pulse, and a first switching instant is determined from the first digital data sequence. Moreover, the detection light emanating from the sample region is detected by a detector, and a second digital data sequence is generated which is representative of the power-time profile of the detection light, and a second switching instant is determined from the second digital data sequence. Finally, the time difference between the first and second switching instants is calculated.
Abstract:
Radiation scattering is one of the main contributors to the uncertainty of near infrared (NIR) measurements. Enhanced absorption-measurement accuracy for NIR sensors is achieved by using a combination of NIR spectroscopy and time-of-flight techniques to select photons that are the result of a given mean free path within a moving sample target. By measuring absorption as a function of path length or by windowing signals that are attributable to excessive scattering of NIR radiation within the sample, this technique affords the calculation of more accurate and more universal calibrations. The NIR sensor employs short or ultra-short laser pulses to create NIR that is directed to the moving sample and emerging radiation is detected over time. Windowing effectively truncates non-contributing measurements.