Abstract:
Embodiments of a method for forming a field emission diode for an electrostatic discharge device include forming a first electrode, a sacrificial layer, and a second electrode. The sacrificial layer separates the first and second electrodes. The method further includes forming a cavity between the first and second electrode by removing the sacrificial layer. The cavity separates the first and second electrodes. The method further includes depositing an electron emission material on at least one of the first and second electrodes through at least one access hole after formation of the first and second electrodes. The access hole is located remotely from a location of electron emission on the first and second electrode.
Abstract:
An electron emission device includes a number of second electrodes intersected with a number of first electrodes to define a number of intersections. The first electrode includes a carbon nanotube layer and a semiconductor layer coated on the carbon nanotube layer. An insulating layer is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the semiconductor layer is sandwiched between the insulating layer and the carbon nanotube layer.
Abstract:
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Abstract:
A field emission device, which among other things may be used within an ultra-high density storage system, is disclosed. The emitter device includes an emitter electrode, an extractor electrode, and a solid-state field controlled emitter that utilizes a Schottky metal-semiconductor junction or barrier. The Schottky metal-semiconductor barrier is formed on the emitter electrode and electrically couples with the extractor electrode such that when an electric potential is placed between the emitter electrode and the extractor electrode, a field emission of electrons is generated from an exposed surface of the semiconductor layer. Further, the Schottky metal may be selected from typical conducting layers such as platinum, gold, silver, or a conductive semiconductor layer that is able to provide a high electron pool at the barrier. The semiconductor layer placed on the Schottky metal is typically very weakly conductive of n-type and has a wide band gap in order to create conditions conducive to creating induced negative electron affinity at applied fields necessary to provide electron emission. One type of wide band-gap material can be selected from titanium dioxide or titanium nitride or other comparable materials.
Abstract:
The present invention relates to a diamond n-type semiconductor in which the amount of change in carrier concentration is fully reduced in a wide temperature range. The diamond n-type semiconductor comprises a diamond substrate, and a diamond semiconductor formed on a main surface thereof and turned out to be n-type. The diamond semiconductor exhibits a carrier concentration (electron concentration) negatively correlated with temperature in a part of a temperature region in which it is turned out to be n-type, and a Hall coefficient positively correlated with temperature. The diamond n-type semiconductor having such a characteristic is obtained, for example, by forming a diamond semiconductor doped with a large amount of a donor element while introducing an impurity other than the donor element onto the diamond substrate.
Abstract:
The method of the invention for extracting electrons in a vacuum consists in: making a cathode presenting at least one junction (9) between a metal (7) acting as an electron reservoir and an n-type semiconductor (8) possessing a surface potential barrier with a height of a few tenths of an electron volt, and presenting thickness lying in the range 1 nm to 20 nm; injecting electrons through the metal/semiconductor junction (9) to create a space charge in the semiconductor (8) sufficient to lower the surface potential barrier of the semiconductor to a value that is less than or equal to 1 eV relative to the Fermi level of the metal (7); and using the bias source creating an electric field in the vacuum to control the height of the surface potential barrier (Vp) of the n-type semiconductor in order to control the emission of the electron flux towards the anode.
Abstract:
The field emission planar electron emitter device is disclosed that has an emitter electrode, an extractor electrode, and a planar emitter emission layer, electrically coupled to the emitter electrode and the extractor electrode. The planar electron emitter is configured to bias electron emission in a central region of the emission layer in preference to an outer region thereof. One structural example that provides this biasing is achieved by fabricating the planar emitter emission layer so that it has an outer perimeter that is thicker in depth than at an interior portion of the planar emitter emission layer, which reduces electron beam emission at the outer perimeter when an electric field is applied between the emitter electrode and the extractor electrode. The electric field draws emission electrons from the surface of the planar emitter emission layer towards the extractor electrode at a higher rate at the interior portion than at the outer perimeter. The planar electron emitter device further includes a focusing electrode electrically coupled to the planar electron emitter.
Abstract:
A mask layer with an opening is formed on a main surface of a silicon substrate, which is exposed in the opening. Then, a hexagonal pyramidal island-shaped portion is formed from a first semiconductor nitride in the opening to complete a semiconductor element structure.
Abstract:
The field emission planar electron emitter device is disclosed that has an emitter electrode, an extractor electrode, and a planar emitter emission layer, electrically coupled to the emitter electrode and the extractor electrode. The planar electron emitter is configured to bias electron emission in a central region of the emission layer in preference to an outer region thereof. One structural example that provides this biasing is achieved by fabricating the planar emitter emission layer so that it has an outer perimeter that is thicker in depth than at an interior portion of the planar emitter emission layer, which reduces electron beam emission at the outer perimeter when an electric field is applied between the emitter electrode and the extractor electrode. The electric field draws emission electrons from the surface of the planar emitter emission layer towards the extractor electrode at a higher rate at the interior portion than at the outer perimeter. The planar electron emitter device further includes a focusing electrode electrically coupled to the planar electron emitter.