Abstract:
In a method for manufacturing a glow cathode for an electron tube, a layer of an alloy, such as iridium-lanthanum (Ir.sub.2 La), is produced on a substrate by coating the substrate, such as in a number of layers, with the components of the alloy by deposition from the vapor phase, such that the components of the alloy are present in the stoichiometrically correct ratio on the substrate, and in that the substrate is heated for a time duration adequate for alloy formation to a temperature that is lower than the melting temperature of the phase of the alloy having the lowest melting point.
Abstract:
An improved high performance x-ray system, having an improved cathode cup assembly which provides reduced tube manufacturing costs and reduces failures due to filament misalignment or sagging of the filament during both the manufacturing process and during operation, is disclosed.
Abstract:
A toroidal x-ray tube (I) is supported (II) for rotation about a horizontal axis (170), translation along a vertical axis (172), and translation along a horizontal axis (174). The x-ray tube includes a toroidal housing (A), an annular anode (B), and a cathode (0) which rotates a beam of electrons around the annular anode. A plurality of parallel connected voltage sources (90.sub.1, 90.sub.2, . . . , 90.sub.n) provide a sufficiently high bias voltage between the electron source and the anode that x-rays are generated. The x-ray beam passes through a compensator crystal (62), an annular window (20), a collimator (132), through a subject received in a central bore (26) of the x-ray tube, and impacts an arc segment of radiation detectors (130). The x-ray detectors are stationarily mounted outside of the plane of the annular window (FIGS. 2 and 7), nutate into the plane of the windows opposite of the origin of the x-ray beam (FIG. 6 ), rotate in part (FIG. 9 ) or rotate in full (FIG. 8 ) Angular position monitors (58, 154) determine the angular position of the cathode assembly, hence the x-ray beam, and the angular position of the detectors in the rotating detector embodiment.
Abstract:
A mammography X-ray tube providing increased X-ray intensity for shortening patient exposure times to eliminate motion artifacts. The cathode design permits superpositioning of electron beam from multiple filaments.
Abstract:
An evacuated envelope (C) which is connected with an anode (A), has a cathode assembly (B) rotatably mounted inside. Magnets (44, 46) hold the cathode assembly stationary as the anode and envelope rotate. A ferrite core transformer (60) includes a ferrite core primary (66) stationarily mounted exterior to the envelope. A secondary (64) is mounted to the cathode assembly interior to the envelope. The secondary winding includes a ferrite core (70), a portion of which is surrounded by a ceramic, dielectric bobbin (76). The bobbin includes walls or ridges (78) which define a spiral groove (80) therearound in which an uninsulated electric wire (82) is received. The uninsulated electric wire is connected with a cathode filament (52). The primary winding has a ferrite core (90) that has about five times the cross section as the secondary ferrite core to compensate for a low, about 20%, coupling efficiency between the primary and secondary windings. Preferably, the primary winding core tapers (94) adjacent its pole faces to focus magnetic flux toward pole faces (72, 74) of the secondary ferrite core.
Abstract:
A toroidal x-ray tube housing (A) has an evacuated interior. An annular anode (B) is connected with the housing closely adjacent the window such that a cooling fluid passage (12) is defined in intimate thermal communication with the anode. A cathode assembly (32) is mounted within the evacuated housing or an annular ring (30) that rotates an electron beam (22) around the large diameter annular anode. In the embodiment of FIGS. 1 and 2, the annular ring is magnetically levitated (40) and rotated by a motor (50). A collimator (62) and filter (64) are rotated with the cathode assembly closely adjacent an electron emitter or cathode cup (32) such that the generated x-rays are collimated and filtered within the x-ray tube. Preferably, a plurality of cathode cups (120) are provided, whose operation is selected by a series of magnetically controlled switches (76). The cathode cup is insulated (106) from the annular ring and isolated by a transformer (104, 112) from the filament current control switches. In the embodiment of FIGS. 4-6, the cathode assembly (C) includes a multiplicity of stationarily mounted electron cups (120) which are selectively actuated to rotate the electrode beam by a switch (130). An electron beam scan control (134) may bias the potential applied to grids (124, 126) to scan the electron beam generated by electron emitter over a commensurate arc length of the anode with the arc length of the emitter. In the embodiment of FIG. 7 , multiple anode surface as well as multiple cathode cups are provided.
Abstract:
A microfocus X-ray tube having an improved cathode assembly including a filament mounting disk for adjustably mounting a flat ribbon filament or a round wire filament such that the filament extends through an aperture in a focal plane disk which provides a uniform focusing field to the filament as well as a uniform heat sink surface.
Abstract:
This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.
Abstract:
An anode and a cathode are in an evacuated metal envelope comprising a radiation exit window and which carry a positive and a negative high voltage, respectively, with respect thereto during operation. The cathode, at its area which neighbors the radiation exit window, has a ridge segment which extends in the axial direction partially about the cathode filament. The segment shields the radiation exit window from the electrons emitted by the cathode to reduce heating of the window by the electrons.
Abstract:
An x-ray tube is disclosed whose cathode cup is battery biased at a low level, approximately 30 volts DC, to inhibit "wings" on the focal spot of electrons bombarding the anode. The battery for providing bias, floats at the DC electrical potential applied to the cathode, many KV below ground potential. Geometric modifications to the filament/focusing cup arrangement are also included. The geometrical characteristics partially inhibit the dispersion of electrons, inhibiting the formation of "wings" on the x-ray focal spot, particularly at high current levels. At lower current levels, the low DC battery bias enhances the anti-dispersion effects of the geometrical characteristics to inhibit wing formation even at these lower current levels.