Abstract:
Disclosed are a cartridge-type X-ray source apparatus and an X-ray emission apparatus using the same. The X-ray source includes: a cathode electrode provided with an electron emission source by using a nanostructure; an anode electrode having a target emitting X-rays by electron collision; and a housing forming an external appearance, and exposing a cathode electrode terminal connected to the cathode electrode and an anode electrode terminal connected to the anode electrode to an outside thereof, wherein the cathode electrode terminal and the anode electrode terminal differ from each other in at least one of exposure direction, height, size, and shape.
Abstract:
The present invention relates to a high-voltage x-ray tube (R) with an inner vacuum chamber (11) in which lie, oriented opposite one another, a cathode (8) held at a negative high voltage during operating conditions and an anode (2) held at a positive high voltage during operating conditions, wherein the anode (2) is affixed to an anode isolation element (3a) such that the anode isolation element (3a) has a cylindrical form or a form tapering toward the anode (2) and comprises an opening (5a) to receive a high-voltage plug (12) and has a conductor structure (6/7) via which a coolant can be supplied to the anode (2). This coolant can be, in particular, an insulating oil or another electrically nonconductive liquid. The conductor structure (6/7) can, for example, be integrated completely into the interior of the anode isolation element (3a) but can also be integrated into the surface of the high-voltage plug (12). In another possible solution, the conductor structure (6/7) is integrated into an intermediate element (13) which lies between the anode isolation element (3a) and the high-voltage plug (12).
Abstract:
A high-voltage electronic tube includes a housing enclosing a vacuumized space. The housing has a cylindrical metal jacket and an annular insulating disc connected vacuumtight to an inner face of the jacket. An electrode support passes through a central opening of the annular insulating disc and is connected vacuumtight to the annular insulating disc. The electrode support positions an electrode in the vacuumized space. A metal sleeve divides the annular insulating disc into two separate annular disc parts arranged concentrically to the tube axis. The metal sleeve is connected vacuumtight to the annular disc parts.
Abstract:
An X-ray tube unit for neutral-grounded use which comprises an X-ray tube having an envelope with the central portion formed of a metal cylinder, a housing containing the X-ray tube, and a lead wire extending from the cylinder to the outside of the housing, whereby the X-ray tube is electrically insulated from and fixed to the housing, and charged potential in the metal cylinder is dropped.
Abstract:
A portable X-ray source device for producing a selected number of uniform X-ray output pulses. The device comprises a spiral capacitor voltage generator, a transformer assembly and a cold-cathode emitter X-ray tube. The capacitor and transformer are coaxially disposed in mating sections of a cylindrical canister which is evacuated and filled with oil. The tube is disposed centrally within the capacitor and transformer for packaging efficiency. Corona suppression means are provided for preventing high voltage damage within the canister. The X-ray tube employs an emitter comprising spaced rings of woven graphite material. A spark gap trigger device including tungsten electrode strips is mounted on the outside of the canister where it can occupy the corner space of a square sheet metal housing. A slide-in battery cartridge and high power converter circuit are provided for dc operation.
Abstract:
Described herein is an x-ray tube assembly that includes: a housing that encloses an inner volume; a movable divider within the inner volume, the movable divider dividing the inner volume into a first volume and a second volume; an x-ray tube within the first volume; the first volume between the housing and the x-ray tube filled with an insulating fluid; and the second volume filled with a compressible gas.
Abstract:
Disclosed is an x-ray tube including a hybrid electron emission source, which uses, as an electron emission source, a cathode including both a field electron emission source and a thermal electron emission source. An x-ray tube includes an electron emission source emitting an electron beam, and a target part including a target material that emits an x-ray as the emitted electron beam collides with the target part, wherein the electron emission source includes a thermal electron emission source and a field electron emission source, and emits the electron beam by selectively using at least one of the thermal electron emission source and the field electron emission source.
Abstract:
According to one embodiment, an X-ray tube includes a cathode, an anode target and an envelope. The cathode includes an insulating member, a conductive line, a pin assembly, a filament, a focusing electrode, and a terminal assembly. The conductive line is formed on the insulating member. The pin assembly includes a pin and a first sleeve. The terminal assembly is fixed to the insulating member, is supporting the filament, and is electrically connecting the filament to the conductive line.
Abstract:
The present invention provides an X-ray needle module for local radiation therapy containing: an X-ray generating part supplied with external electric power; and an X-ray needle forming part which collects the X-rays generated by the X-ray generating part and extracts the collected X-rays into high-intensity short-wavelength parallel X-rays so as to form an X-ray needle. The X-ray needle forming part includes a housing with an entrance hole at one surface through which the X-rays generated by the X-ray generating part enter and an exit hole at another surface through which the X-ray needle exits, the X-ray needle, provided in the housing, which collects the X-rays generated by the X-ray generating part and forms the X-ray needle of the high-intensity short-wavelength parallel X-rays and a position controller, provided at a leading end of the X-ray mirror.