Abstract:
A method for manufacturing an electron source includes steps of sandwiching a welding object in which a tip of an electron emission material and a tungsten filament overlap in direct contact between a pair of welding electrodes, and welding the tip and the tungsten filament by causing a current to flow while pressing forces are applied to the welding object by the pair of welding electrodes. A thickness of the welding object is within a range of 50 to 500 μm.
Abstract:
One embodiment provides a tungsten wire containing 1 to 10% by mass of rhenium, the wire having a point indicating a 2% elongation within a quadrangle formed by joining points with straight lines, where the values of x and y are point (20, 75), point (20, 87), point (90, 75), and point (90, 58), in this order; wherein the wire diameter of the tungsten wire is represented by x μm, and the elongation of the tungsten wire is 2% after electrically heating with an electrical current which is a ratio of y % to the fusion current (FC) at the wire diameter x μm, and wherein a semi-logarithmic system of coordinates is expressed by a horizontal axis using a logarithmic scale of the wire diameter x and a vertical axis using a normal scale of ratio y to the fusion current.
Abstract:
A tungsten wire containing 1 to 10% by mass of rhenium has a point which indicates a 2% elongation within a quadrangle formed by joining points with straight lines, where the values of x and y are point (20, 75), point (20, 87), point (90, 75), and point (90, 58), in this order, wherein the wire diameter of the aforementioned tungsten wire is represented by x μm, and the elongation of the tungsten wire is 2% after electrically heating with an electrical current which is a ratio of y % to the fusion current (FC) at the wire diameter x μm, and wherein a semi-logarithmic system of coordinates is expressed by a horizontal axis using a logarithmic scale of the aforementioned wire diameter x and a vertical axis using a normal scale of ratio y to the fusion current. According to the above-described configuration, a tungsten wire having a great elongation even under conditions of high temperature can be provided, and the tungsten wire can exhibit an excellent durability when used as component material for constituting cathode heaters and so forth, and the tungsten wire can be manufactured efficiently.
Abstract:
An electron emissive composition comprises a barium tantalate composition of the formula (Ba1−x, Cax, Srp, Dq)6(Ta1−y, Wy, Et, Fu, Gv, Caw)2O(11±δ) where δ is an amount of about 0 to about −3; and wherein D is either an alkali earth metal ion or an alkaline earth ion; E, F, and G, are alkaline earth ions and/or transition metal ion; x is an amount of up to about 0.7; y is an amount of up to about 1; p and q are amounts of up to about 0.3; and t is an amount of about 0.05 to about 0.10, u is an amount of up to about 0.5, v is an amount of up to about 0.5 and w is an amount of up to about 0.25. A method for manufacturing an electron emissive composition comprises blending a barium tantalate composition with a binder; and sintering the barium tantalate composition with the binder at a temperature of about 1000° C. to about 1700° C.
Abstract:
A DC gas discharge type image display device includes a front glass substrate; a rear glass substrate facing the front glass substrate, interposing a discharge gas therebetween; a set of anodes including a plurality of line electrodes formed on the rear glass substrate; a set of cathodes including a plurality of line electrodes placed on the front glass substrate so as to perpendicularly cross the set of anodes; and a plurality of discharge cells, each being provided so as to correspond to each of the cross points of the set of anodes and the set of cathodes. The device is driven in a refresh driving method or a memory driving method. As to the production of this device, the set of cathodes is formed by a spraying method. The cathodes are made from aluminum, nickel, an aluminum alloy or a nickel alloy. The discharge gas is a mixed gas of He and Xe.
Abstract:
In order to provide a thermionic emission filament capable of ensuring a long life and improving an analysis accuracy of a mass spectrometer using the thermionic emission filament, in the thermionic emission filament including a core member through which electric current flows and an electron emitting layer which is formed so as to cover a surface of the core member, the electron emitting layer is configured to have denseness for substantial gas-tight integrity.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
One embodiment provides a tungsten wire containing 1 to 10% by mass of rhenium, the wire having a point indicating a 2% elongation within a quadrangle formed by joining points with straight lines, where the values of x and y are point (20, 75), point (20, 87), point (90, 75), and point (90, 58), in this order; wherein the wire diameter of the tungsten wire is represented by x μm, and the elongation of the tungsten wire is 2% after electrically heating with an electrical current which is a ratio of y % to the fusion current (FC) at the wire diameter x μm, and wherein a semi-logarithmic system of coordinates is expressed by a horizontal axis using a logarithmic scale of the wire diameter x and a vertical axis using a normal scale of ratio y to the fusion current.