Abstract:
A method of ablating a polymeric substrate by laser means, wherein the laser means emits a laser having a selected wavelength dependant upon the polymeric substrate, and wherein at least 70% of the incident power from the laser means absorbs within 0.001 inches of the polymeric substrate.
Abstract:
A dielectric substrate for laser working contains a substance having a size of a half to 10 times of a laser light wavelength and different in refractive index from a material of the dielectric substrate. This substance enhances the absorption of a laser beam. Due to this, the energy loss in laser beam is transformed into the heat of fusion to form a penetration hole, thereby forming a well-formed penetration hole. The substance different in refractive index from the dielectric substrate material uses bubbles when the dielectric substrate is a quartz glass substrate, and a glass bead or fiber when it is a resin substrate.
Abstract:
The present invention provides an ablatively photodecomposable polymer having a photoabsorber bound to the polymer (the "ablatively photodecomposable polymer") which does not phase separate, nor does it crystallize. The ablatively photodecomposable polymer provides even ablation, high resolution and in preferred embodiments, can withstand potassium permanganate etchant and ferric chloride etchant. The ablatively photodecomposable polymer is strippable, although it can remain on the substrate if desired. The ablatively photodecomposable polymer comprises a polymer to which a photoabsorber is bound, either covalently or ionically. The present invention is also directed to a process for forming a metal pattern on a substrate employing the ablatively photodecomposable polymer.
Abstract:
There is disclosed herein an electronic component 10 having an integral heat spreader 16 specially designed to assist in laser soldering of the heat spreader to a solder pad 22 on a substrate 20. The component 10 has a top surface 30, a bottom surface 32 generally parallel to the top surface, and at least one perimeter outer surface 34 generally orthogonal to and between the top and bottom surfaces. The component 10 comprises: a circuit portion 12; at least one termination 14 connected to the circuit portion 12 and extending outward therefrom; a heat spreader 16 portion situated generally beneath and in thermal contact with the circuit portion 12; and a body portion 18 enclosing at least a top surface of the circuit portion 12 and a part of each termination 14 proximate the circuit portion 12. The heat spreader 16 defines at least part of the bottom surface 32 of the electronic component 10 and at least part of the at least one perimeter outer surface 34 of the electronic component 10.
Abstract:
A method for forming a resin pattern which includes selectively polymerizing a photopolymerizable resin utilizing a light radiated from a photosensitive substance to form a desired resin pattern. A photosensitive substance layer is formed in a desired pattern on a substrate (or in a substrate when it is light permeable). The photosensitive substance absorbs an irradiation light and radiates a light of a longer wavelength than that of the irradiation light. A photopolymerizable resin layer formed on the substrate is not activated by the irradiation light but is activated by the light radiated from the photosensitive substance. The photopolymerizable resin layer is irradiated with an irradiation light capable of exciting the photosensitive substance and the photo-polymerizable resin is polymerized in the pattern of the photosensitive substance layer with the light radiated from the photosensitive substance.
Abstract:
A method for forming a blind-via in a laminated substrate by laser drilling a blind-via from a top surface of the substrate toward a bottom surface of the substrate using a first laser and a first trepanning motion of a laser focal spot of the first laser. Then, the via is laser drilled from the top surface toward the bottom surface using a second laser and a second trepanning motion of a laser focal spot of the second laser.
Abstract:
The present invention relates to a method of manufacturing a circuit module through the use of a wireless bonding technique. In this invention, in order to achieve component assembly without experiencing thermal and mechanical stresses, in the circuit module manufacturing method in which an external electrode of a component and a conductor of a substrate are connected with each other according to the wireless bonding technique, the substrate has a laser beam transmissible property, and after the component is placed on an assembly surface of the substrate, a laser beam is applied from a surface of the substrate opposite to the assembly surface thereof to a connecting spot. The laser beam passing through the substrate heats the connecting spot so that the connection between the external electrode of the component and the conductor of the substrate is made by phase transition or diffusion.
Abstract:
The present invention provides an ablatively photodecomposable polymer having a photoabsorber bound to the polymer (the "ablatively photodecomposable polymer") which does not phase separate, nor does it crystallize. The ablatively photodecomposable polymer provides even ablation, high resolution and in preferred embodiments, can withstand potassium permanganate etchant and ferric chloride etchant. The ablatively photodecomposable polymer is strippable, although it can remain on the substrate if desired. The ablatively photodecomposable polymer comprises a polymer to which a photoabsorber is bound, either covalently or ionically. The present invention is also directed to a process for forming a metal pattern on a substrate employing the ablatively photodecomposable polymer.
Abstract:
The present invention provides an ablatively photodecomposable polymer having a photoabsorber bound to the polymer (the "ablatively photodecomposable polymer") which does not phase separate, nor does it crystallize. The ablatively photodecomposable polymer provides even ablation, high resolution and in preferred embodiments, can withstand potassium permanganate etchant and ferric chloride etchant. The ablatively photodecomposable polymer is strippable, although it can remain on the substrate if desired. The ablatively photodecomposable polymer comprises a polymer to which a photoabsorber is bound, either covalently or ionically. The present invention is also directed to a process for forming a metal pattern on a substrate employing the ablatively photodecomposable polymer.
Abstract:
This disclosure relates to laser bonding electrical components having conductive elements which are naturally reflective of the laser beam wavelength. Component leads or pads which are made of copper or have a gold coating, for example, will reflect the wavelength of an Nd:YAG laser, making it difficult to form physical and electrical bonds using the laser bonding technique. In preferred embodiments, the conductive elements are coated with a non-flux, non-metallic, coating material which is less reflective of the laser energy than the conductive elements, making it possible to efficiently use a laser to accomplish bonding.