Abstract:
A hybrid integrated circuit is prepared by laminating an aluminum-copper clad foil on an insulating layer, etching the aluminum-copper clad foil with etching agents to form an aluminum circuit and a copper circuit and connecting a semiconductor element to the aluminum circuit through an aluminum wire or a gold wire while connecting a circuit element to the copper circuit by soldering.
Abstract:
A printed circuit board includes: a first insulating layer; a first metal layer disposed on one surface of the first insulating layer; a second metal layer disposed on the other surface facing the one surface of the first insulating layer; a via penetrating through the first insulating layer to connect the first and second metal layers to each other; and a heterogeneous metal region disposed in at least one of an area in which the via is adjacent to the first insulating layer and an area in which the via is adjacent to the first metal layer, and including a material different from that of the via, wherein the heterogeneous metal region includes at least one of nickel (Ni), silicon (Si), and titanium (Ti).
Abstract:
A circuit module includes: a substrate including a first main surface and a second main surface; a resin layer on the first main surface of the substrate; an electronic component; a penetrating portion penetrating the resin layer in a thickness direction; a first conductor that is a pillar conductor present in the penetrating portion, the first conductor including a first bottom closer to the substrate and a second bottom inward of an outer surface of the resin layer; a second conductor that is a metal film covering at least a portion of a side surface of the first conductor, the second conductor including a portion extending continuously from the side surface of the first conductor to the same plane with the outer surface of the resin layer.
Abstract:
The disclosed technology generally relates to forming metallization structures for integrated circuit devices by plating, and more particularly to plating metallization structures that are thicker than masking layers used to define the metallization structures. In one aspect, a method of metallizing an integrated circuit device includes plating a first metal on a substrate in a first opening formed through a first masking layer, where the first opening defines a first region of the substrate, and plating a second metal on the substrate in a second opening formed through a second masking layer, where the second opening defines a second region of the substrate. The second opening is wider than the first opening and the second region encompasses the first region of the substrate.
Abstract:
A circuit apparatus includes at least one circuit feature formed from patterning a conductive sheet. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions of the circuit apparatus and is maintained in second regions of the circuit apparatus. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
Abstract:
A chip part includes a substrate, a first electrode and a second electrode which are formed apart from each other on the substrate and a circuit network which is formed between the first electrode and the second electrode. The circuit network includes a first passive element including a first conductive member embedded in a first trench formed in the substrate and a second passive element including a second conductive member formed on the substrate outside the first trench.
Abstract:
The invention provides processes for the manufacture of conductive transparent films and electronic or optoelectronic devices comprising same.
Abstract:
A light-emitting device capable of ensuring an electric connection between a light-emitting element and an electrode without generating any problem in practical use, by both connecting methods with a solder and a connector, and a lighting device provided with the light-emitting device are provided. The light-emitting device according to the present invention has a plurality of LED chips, and a soldering electrode land and a connector connecting electrode land electrically connected to the chips, on a ceramic substrate. The soldering electrode land is formed of a first conductive material having a function to prevent diffusion to a solder, and the connector connecting electrode land is formed of a second conductive material having a function to prevent oxidation.
Abstract:
A circuit apparatuses include at least one circuit feature formed from patterning a conductive sheet. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions of the circuit apparatus and is maintained in second regions of the circuit apparatus. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
Abstract:
A circuit board includes a core layer, at least one passive component, a first and a second conductive wire layers, at least one contact pad, and a resin packing layer. The core layer defines at least one through hole to receive the passive component. The first and the second conductive wire layers are connected to two opposite surfaces of the core layer. Each contact pad is positioned between and connected to one passive component and the first conductive wire layer. The resin packing layer is filled among the core layer, each passive component, each contact pad, the first and the second conductive wire layers. The resin packing layer can connect the first and the second conductive wire layers to the core layer, and connect the core layer, each passive component, and each contact pads to each other.