Abstract:
There is provided a flexible harness adapted to be detachably connected to electrode pads of an electric/electronic component. The flexible harness according to the present invention comprises: a flexible insulator film; a conductor pattern formed on the flexible insulator film; a terminal plane which is an end region of the conductor pattern; and ball-like contact bumps formed on the terminal plane. Each contact bump includes a core made of an elastically deformable resin and an electrical conductor layer surrounding the core.
Abstract:
A connection device includes a ground electrode layer that is provided in a substrate, a first transmission path that is provided on the ground electrode layer via a dielectric layer, and a plurality of leads that are connected to the first transmission path and the ground electrode layer or the first transmission path and a plane that is electrically connected to the ground electrode layer. The plurality of leads are fitted into through-holes that are provided in a second transmission path and a ground electrode on a flexible substrate to be electrically connected.
Abstract:
A signal line (2) is formed on one surface of a base substrate (1), and a cover lay film (3) is laminated further. A plurality of projections (4) made of an insulating material are formed at substantially regular intervals vertically and laterally on an upper surface of the above-mentioned cover lay film and a ground layer (5), for example, made of a silver paste is formed on the above-mentioned cover lay film except for the arranged position of each of the above-mentioned projections.In this case, a film thickness of the ground layer made of said conductive paste is formed to be less than a height of a top of said projection arranged at an insulating layer, so that an openings (gaps) substantially in the shape of a mesh can be formed at the ground layer made of the conductive paste because of the existence of the projection.Thus, it is possible to provide a circuit board achieving the similar effect to that of a ground plane having gaps substantially in the shape of a mesh.
Abstract:
According to one embodiment, an electronic apparatus includes a flexible printed wiring board. The printed wiring board includes a conductive layer including a signal line and a ground line, a second insulating layer layered on the conductive layer and including openings open to above the ground line, a ground layer covering the signal line and electrically connected to the ground line, and a third insulating layer covering the ground layer. The ground layer includes first and second conductive pastes. The first conductive paste is filled in the openings so as to cover the ground line exposed to bottoms of the openings. The second conductive paste is applied so as to continuously cover the first conductive paste and the second insulating layer. The second conductive paste has a smaller volume resistivity than the first conductive paste.
Abstract:
A first wiring layer in a circuit substrate structure is provided with a first inductor and a second inductor. A dielectric layer is provided with a first via and a second via electrically connected to the first inductor and the second inductor, respectively. A second wiring layer is provided with: a bridge electrically connecting the first via and the second via; and a conductive pattern provided around the bridge, the outer edge of the conductive pattern being located outside the outer edge of the first wiring pattern and the second wiring pattern in the first wiring layer. The bridge functions as a coplanar line and suppresses generation of electromagnetic field.
Abstract:
A flexible printed circuit and fabrication method thereof is provided. At least one signal wire is disposed on a plastic substrate. Two ground lines are disposed at both sides of the signal wire in parallel. A shielding layer is provided, contacting the plastic substrate to form a chamber, wherein the signal wire and ground lines are wrapped therein. A flexible dielectric layer is implemented between the signal wire and the shielding layer to provide electricity isolation.
Abstract:
A flexible printed circuit board (FPCB) includes a signal layer, upper and lower ground layers, and two dielectric layers. The signal layer includes a differential pair comprising two transmission lines to transmit a pair of differential signals. The dielectric layers are located on and under the signal layer to sandwich the signal layer. The upper ground layer is attached to the dielectric layer on the signal layer, opposite to the signal layer. The lower ground layer is attached to the dielectric layer under the signal layer, opposite to the signal layer. Each ground layer includes a grounded sheet made of conductive material. Two voids are defined in each ground layer and located at opposite sides of the corresponding grounded sheet. Distances between the middle line of the grounded sheet of each ground layer and middle lines of the two transmission lines are equal.
Abstract:
Objects of the present invention is to provide a flexible printed wiring board which has a simple structure, which can be produced at low cost, and which can effectively dissipate heat generated by semiconductor chips, and to provide a semiconductor device employing the flexible printed wiring board. The flexible printed wiring board of the invention has an insulating substrate, and a wiring pattern formed of a conductor layer and provided on one surface of the insulating substrate, wherein the wiring pattern includes inner leads for mounting a semiconductor chip and outer leads for input and output wire connection, and a metal layer is adhered to the wiring pattern via an insulating adhesion layer.
Abstract:
Disclosed herein is a flat uniform transmission line having an electromagnetic shielding function. The flat uniform transmission line includes a strip transmission line, an insulating layer, and electromagnetic shielding layers. The strip transmission line is formed on a dielectric layer made of functional polymer material, and includes a plurality of strip lines. The plurality of strip lines are configured to be a ground line, or to transmit signals. The insulating layer is formed on the strip transmission line. The electromagnetic shielding layers are respectively formed on the insulating layer and beneath the strip transmission line.
Abstract:
A first wiring layer in a circuit substrate structure is provided with a first inductor and a second inductor. A dielectric layer is provided with a first via and a second via electrically connected to the first inductor and the second inductor, respectively. A second wiring layer is provided with: a bridge electrically connecting the first via and the second via; and a conductive pattern provided around the bridge, the outer edge of the conductive pattern being located outside the outer edge of the first wiring pattern and the second wiring pattern in the first wiring layer. The bridge functions as a coplanar line and suppresses generation of electromagnetic field.