Abstract:
A packaging structure and a packaging method of an electronic product are disclosed. The packaging structure of an electronic product includes a supporting structure, a flexible board and a covering layer. The supporting structure has a shape. The flexible board is stacked on the supporting structure, and has an electronic device disposed thereon. The covering layer is attached on the stacked supporting structure and flexible board and covering the electronic device. The shapes of the flexible board and the covering layer conform to the shape of the supporting structure, and the flexible board and the electronic device are tightly interposed between the covering layer and the supporting structure. The covering layer includes a thermoforming film and at least a function film stacked on the thermoforming film.
Abstract:
A coating for mitigating metal whiskers on a metal surface includes a polymeric coating material; and a metal ion complexing agent impregnated within the polymeric coating material, the metal ion complexing agent having a standard reduction potential (E°) that is greater than a metal in the metal surface.
Abstract:
The present invention relates to an electrical assembly which has a conformal coating, wherein said conformal coating is obtainable by a method which comprises: (a) plasma polymerization of a compound of formula (I) and a fluorohydrocarbon, wherein the molar ratio of the compound of formula (I) to the fluorohydrocarbon is from 5:95 to 50:50, and deposition of the resulting polymer onto at least one surface of the electrical assembly: wherein: R1 represents C1-C3 alkyl or C2-C3 alkenyl; R2 represents hydrogen, C1-C3 alkyl or C2-C3 alkenyl; R3 represents hydrogen, C1-C3 alkyl or C2-C3 alkenyl; R4 represents hydrogen, C1-C3 alkyl or C2-C3 alkenyl; R5 represents hydrogen, C1-C3 alkyl or C2-C3 alkenyl; and R6 represents hydrogen, C1-C3 alkyl or C2-C3 alkenyl, and (b) plasma polymerization of a compound of formula (I) and deposition of the resulting polymer onto the polymer formed in step (a).
Abstract:
Described herein is a multi-layer thin film stack including a first ALD layer of a first metal oxide deposited on a substrate surface of a substrate, a first parylene layer covering the first ALD layer, and a second ALD layer of a second metal oxide covering the first parylene layer. The multi-layer thin film stack further includes a second parylene layer covering the second ALD layer.
Abstract:
Methods for protecting an electronic device from contaminants by applying different polymeric materials to different vital components of a device are disclosed. In one embodiment, the method comprises applying an electrically insulating polymer, such as an acrylic-based polymer, to one or more connectors and components located on the printed circuit board of the device. The method further comprises applying a polymer capable of carrying a charge, such as a silicone-based polymer, to different connectors and components on the printed circuit board. The method leads to different components being coated with a different polymers. Electronic devices that are protected by such polymeric, hydrophobic coatings are also disclosed, such as smart phones, computers, and gaming devices.
Abstract:
A conductor in a laminar structure, such as a printed circuit board or thin-film stack, is closely flanked by at least one open trench filled with an ambient medium (e.g., air, another gas, vacuum) of a lower dielectric loss than the conductor's surrounding dielectric. The trench may be made by any suitably precise method such as laser scribing, chemical etching or mechanical displacement. A thin layer of dielectric may be left on the sides of the conductor to prevent oxidation or other reactions that may reduce conductivity. When the conductor carries a signal, part of an electric and/or magnetic field that would ordinarily travel through the surrounding dielectric encounters the low-loss ambient medium (e.g. air) in the trench. The effective dielectric loss surrounding the conductor is lowered, reducing signal attenuation and crosstalk, particularly at high frequencies.
Abstract:
A machine can include a conveyor that receives and conveys a circuit assembly treated with a UV curable coating material; a UV zone that includes LED-based UV radiation sources; a circuit assembly sensor; a heating zone; and a controller that controls power to at least one of the LED-based UV radiation sources based at least in part on information from the circuit assembly sensor.
Abstract:
Provided is a wiring thin plate capable of suppressing deterioration of an electric characteristic and variation in thickness of an aerial wiring portion while advancing reduction of rigidity of the aerial wiring portion. The wiring thin plate includes an aerial wiring portion including wiring traces and passing over an airspace, aerial base layers provided at the respective wiring traces in the aerial wiring portion and being apart from each other, and an aerial cover layer provided in the aerial wiring portion and spanning from the wiring traces of the aerial wiring portion through the aerial base layers to interspaces between adjacent aerial base layers of said aerial base layers.
Abstract:
A method and structure are provided for implementing a conformal coating composition for high current applications. A copper particulate filler material layer is added over a standard conformal coating layer of a circuit component. The added layer aids in dispersing the heat away from the circuit component. The copper particulate filler material reacts with sulfur bearing gasses and prevents corrosive agents from reacting with the underlying component metallurgy, thus extending the product life.
Abstract:
The present invention relates application of conformal coatings made up of nano-fiber, nano-particle, and/or nano-capsule materials to be applied on electrical component parts in general and printed circuit boards (PCB) in particular. A conformal coating material, such as Parlyne, can be combined with nano-materials to produce desired results. Benefits of this invention include enhancement of conventional conformal coatings performance in terms of properties such as mechanical, electrical, magnetic and in particular to prevent or obstruct the growth of tin whiskers or any other manufacturing defect that can develop on the surface of a PCB.