Abstract:
A method for vertical removal of excess solder from a circuit substrate includes the use of a sacrificial circuit substrate with a plurality of pads and vias that are solder-wettable. The pads and vias of the sacrificial circuit substrate are placed in vertical proximity to the excess solder of the circuit substrate. The excess solder is heated until it is liquid, wherein the excess solder is wicked vertically onto the pads and into the vias of the sacrificial circuit substrate. Thereafter, the sacrificial circuit substrate is lifted from the proximity of the circuit substrate while the solder is in a liquid, taking the excess solder with it but leaving a predetermined amount on the circuit substrate.
Abstract:
An apparatus and a method for detecting high impedance failures in system interconnects. The apparatus and method may measure resistance of a connection of one or more representative sets of pins on a partitioned chip to a circuit board and determine if the measured resistance of each of the one or more representative sets of pins is less than a threshold value. The measuring step is executed while the circuit board is operating.
Abstract:
A computer motherboard selectively uses various memories in the light of a dummy card. The computer motherboard comprises a serial resistor, and a first slot and a second slot for holding various memories, respectively. Various memories can be configured on the motherboard without additional settings by means of predefined dummy card or/and rearranging the location of the serial resistor.
Abstract:
A mechanism and method are provided for assembling a printed circuit board having a first surface, a second surface and an edge. The printed circuit board may include at least one female member to receive a corresponding male member. The mechanism may include an extension board having an edge to couple to the edge of the printed circuit board. The extension board may include a male member to extend from the edge of the extension board and to couple to the at least one male member so as to couple the extension board to the printed circuit board.
Abstract:
A system comprising a scavenging blade, a printed wiring board receiving portion, and a movement mechanism adapted to move the scavenging blade and printed wiring board receiving portion relative to each other, and to a method of removing excess fill material comprising providing a printed wiring board having filled holes and at least some excess fill material on a surface of the printed wiring board, providing a system comprising a scavenging blade, positioning the printed wiring board in the system, and causing the scavenging blade to traverse at least a portion of the printed wiring board in a manner that causes the scavenging blade to remove at least a portion of the excess fill material from the printed wiring board.
Abstract:
A system comprising a scavenging blade, a printed wiring board receiving portion, and a movement mechanism adapted to move the scavenging blade and printed wiring board receiving portion relative to each other, and to a method of removing excess fill material comprising providing a printed wiring board having filled holes and at least some excess fill material on a surface of the printed wiring board, providing a system comprising a scavenging blade, positioning the printed wiring board in the system, and causing the scavenging blade to traverse at least a portion of the printed wiring board in a manner that causes the scavenging blade to remove at least a portion of the excess fill material from the printed wiring board.
Abstract:
An electrical circuit includes a substrate having at least two alignment pads on the substrate that are accurately aligned with a first set of electrical interconnect pads, and also includes a corresponding number of alignment posts that are cylindrical and have flat bases that are geometrically similar to and smaller than a corresponding shape of each of the at least two alignment pads by a predetermined solder fillet radius. Each of the at least two alignment posts is reflow soldered to one of the at least two alignment pads. An electrical part can be accurately aligned to the substrate using the alignment posts, during attachment of the electrical part.
Abstract:
A method for producing multi-layer printed board. The method includes heating a hole board as a top layer, an adhesive sheet, and a bottom layer board. The adhesive sheet includes a mold release sheet and a thermoplastic resin sheet which begins to soften at a temperature lower than the melting temperature of the adhesive. A contraction control member controls contraction when the thermoplastic resin sheet cools.
Abstract:
A high-density memory module has thirty-two memory integrated circuit chips, sixteen decoupling capacitors, and two resistors mounted on a double-sided multi-layer printed wiring board having a series of edge terminals for connection to a motherboard. One side of the board has a first 2.times.8 rectangular matrix of the chips, and the other side of the board has a second 2.times.8 matrix of the chips. The chips are grouped into four "strings," each of which includes eight chips which receive the same row address strobe and column address strobe. Each string is selected by a unique row address strobe. All four strings share a common data bus. Two of the strings share a first column address strobe and a first address bus, and the other two strings share a second column address strobe and a second address bus, to facilitate four-way interleaved memory access. Address, data, power, and ground terminals are distributed and dispersed along the series of edge terminals, but terminals for one address bus is disposed between a first half and a second half of the terminals for the other address bus. One of the two resistors is used for indicating the type of the memory chips in the memory module, and the other resistor is interconnected with similar resistors in other memory modules on the motherboard to provide a combined resistance indicating the number of memory modules on the motherboard.
Abstract:
Electrically insulating but thermally conductive "heat shunt" components are attached to PC boards along with regular electronic components to improve heat dissipation. The heat shunts are typically a small bar of thermally conductive ceramic with spaced-apart metal mounting pads on the ends for soldering to the PC board. Their shape is similar to standard electronic components for placement by automatic machinery and they extend, for example, from a transistor collector contact pad on the PC board to an adjacent ground lead having holes plated through to the metal back plane of the PC board in contact with the heat sink.