Abstract:
A surface mount connector includes a pair of electrical contacts spaced from each other a predetermined distance. Each contact includes a substantially flat base portion having upper and lower surfaces, the lower surface being suitable for soldering to a pad or land on a printed circuit board (PCB). Each contact is provided with an integrally-formed conductor-engaging portion extending from a base portion in a direction substantially normal to the base portion. Electrically non-conductive tape is secured to the upper surfaces of the spaced base portions for maintaining the contacts spaced at a set or predetermined distance from each other. The contacts each including member for physically and electrically engaging another insulated conductor so that the connector can physically and electrically engage and secure two separate insulated or clad conductors while maintaining them electrically isolated.
Abstract:
A surface mount connector includes one or two spaced conductive contacts. Each conductive contact(s) include a substantially flat base portion suitable for soldering to a pad or land on a printed circuit board (PCB), At least one vertical finger extends substantially normally from each flat base portion and each terminates in a point or hook formed with a piercing tip at the free end thereof remote from the that base portion. The vertical finger(s) and flat base portion(s) define a space for receiving an insulated conductor arranged in a plane substantially parallel to the plane of the flat base portion(s). The finger(s) are directed inwardly at their free end(s) proximate to the piercing tip(s) and configured to deflect inwardly in a curling action when forced downwardly and crimped to pierce an associated insulated conductor positioned on the flat base portion(s).
Abstract:
A method for producing a semiconductor module arrangement includes providing a semiconductor module and a printed circuit board. The semiconductor module has a circuit mount populated with a semiconductor chip, an adjustment device in a first relative position with respect to the circuit mount, and a plurality of electrical connections each of which has a free end. Each of the connections is routed through a different passage opening in the adjustment device. The printed circuit board is pushed onto the electrical connections by each of the free ends being inserted into a different contact opening in the printed circuit board. The adjustment device is moved to a second relative position, which is different from the first relative position, with respect to the circuit mount.
Abstract:
A semiconductor module includes a copper connector jointing an electrode formed on a top surface of a bare-chip transistor and a wiring pattern out of plural wiring patterns via a solder. The copper connector includes an electrode jointing portion jointed to the electrode of the bare-chip transistor and a substrate jointing portion arranged to face the electrode-jointing portion and jointed to the wiring pattern. The width W1 of the electrode jointing portion in a direction perpendicular to one direction is smaller than the width W2 of the substrate jointing portion in the direction perpendicular to the one direction.
Abstract:
The invention relates to an electromagnetic actuator comprising a housing (9) having several faces (20, 21) and an electronic control circuit (14) split into at least two parts (14a, 14b) distributed over at least two adjacent faces (20, 21) of the housing (9), each part (14a) of the circuit comprising at least one metallic connector (25a) arranged so as to be connected electrically and mechanically with a metallic connector (25b) of another part of the circuit (14b) so as to form an electrical connection (24).
Abstract:
A connecting contact for SM D-components includes a metal material and the metal material at least partially comprises a coating with a different metal material. The connecting contact has a substantially laminar contact area for solderable contact to a board and comprises edge regions. At least one segment of the edge region is at a distance from the laminar contact area, so that a soldered fillet is formed for a soldered contact to a board. Also, a method for producing connecting contacts for SM D-components for solderably contacting a board includes the steps of punching metal strips, bending the metal strips so that a conducting region and a laminar contact area are produced, and forming the edge areas at the laminar contact area. At least one segment of the edge area is at a distance from the laminar contact area.
Abstract:
There is provided a multilayer ceramic capacitor including: a ceramic body; first and second internal electrodes disposed to face each other within a ceramic body, and having respective lead portions exposed to an upper surface of the ceramic body; first and second external electrodes formed on the upper surface of the ceramic body and connected to the lead portions, respectively; and first and second terminal frames each including a vertical portion facing end surfaces of the ceramic body and upper and lower horizontal portions facing upper and lower surfaces of the ceramic body, respectively, wherein the upper horizontal portions are connected to the first and second external electrodes, respectively, and adhesive layers are provided between the upper horizontal portions and the first and second external electrodes, respectively.
Abstract:
A solder joint is disposed on an electrical conductor which comprises silver. The solder joint comprises bismuth and tin. The solder joint has a microstructure comprising a bismuth-rich solder bulk and a silver-solder reaction zone. The bismuth-rich solder bulk is disposed adjacent to the silver-solder reaction zone. The solder joint comprises a plurality of bismuth-rich grains formed from bismuth and substantially dispersed throughout at least the bismuth-rich solder bulk of the solder joint. A window pane comprising the solder joint is also disclosed.
Abstract:
An electrical connector may include a printed circuit board (PCB), the PCB including a plurality of contacts, a plurality of wires coupled to the plurality of contacts on the PCB, a non-conductive pad extending across the PCB, a plurality of pins extending across the non-conductive pad, and an overmold. The plurality of pins may be coupled to the plurality of contacts. The overmold may cover at least a portion of the PCB and at least a first portion of each of the plurality of pins. The overmold may include a first aperture exposing at least a second portion of each of the plurality of pins.
Abstract:
A method for producing a semiconductor module arrangement includes providing a semiconductor module and a printed circuit board. The semiconductor module has a circuit mount populated with a semiconductor chip, an adjustment device in a first relative position with respect to the circuit mount, and a plurality of electrical connections each of which has a free end. Each of the connections is routed through a different passage opening in the adjustment device. The printed circuit board is pushed onto the electrical connections by each of the free ends being inserted into a different contact opening in the printed circuit board. The adjustment device is moved to a second relative position, which is different from the first relative position, with respect to the circuit mount.