Abstract:
An optical system includes a window made of a curved piece of a transparent material having an inner surface and an outer surface. The inner surface has a nominal inner surface shape defined by a first conicoidal relationship, and the outer surface has a nominal general aspheric surface shape. The optical system also typically includes a sensor and an optical train on the side of the inner surface of the window. The accuracy of the shape of the inner surface is tested by directing a coherent light beam through a remote focus of the inner surface, reflecting the light beam from the inner surface toward an adjacent focus of the inner surface, reflecting the light beam from a spherical reflector at the adjacent focus of the inner surface and back toward the inner surface, reflecting the light beam from the inner surface back toward the remote focus, and interferometrically comparing the reflected beam arriving at the remote focus with a reference beam.
Abstract:
Scanner apparatus may comprise a housing having a front side with an opening therein, a back side with an opening therein and a scanning device mounted within the housing. A transparent platen mounted within the opening in the front side of the housing allows an object positioned adjacent the scanning device so that the object may be thereafter scanned. A transparent window mounted within the opening in the back side of the housing allows a user to view at least a portion the object positioned adjacent the transparent platen.
Abstract:
A two-dimensional beam writing position detecting device for providing an optical system for scanning on a photoconductor by laser beams emitted from a semiconductor laser to form an electrostatic latent image and arranging a plurality of the laser beams in two dimensions and slantingly scanning each the laser beam for forming the electrostatic latent image on the photoconductor at a predetermined angle and detecting the laser beams for determining the first writing position on the photoconductor of the laser beams is characterized in that a longitudinal direction of a beam light receiving surface of the detecting device 1 inclines at the substantially same angle as the slant scanning angle with respect to the perpendicular of a scanning direction of the plural beams.
Abstract:
A scanning type optical device comprises one optical characteristics measuring unit per color. Each optical characteristics measuring unit further includes three units. The first unit is provided on a writing start side within a scanning region, the second unit is provided on the other end side within the scanning region, and the third unit is arranged substantially at the center in the scanning region. Laser beams emitted from each of four semiconductor lasers are modulated based on signals detected by the three units in such a manner that a difference between a real image height and an ideal image height is reduced over the entire scanning region.
Abstract:
An apparatus for recording and reading data by measuring contact resistance and a method for recording and reading data thereof are provided. The apparatus for recording and reading data includes a storage medium and a probe which is installed to face the storage medium and is used for recording data on the storage medium and reading the data from the storage medium. The storage medium includes a substrate, a conductive layer formed on the substrate and a dielectric layer formed on the conductive layer. With the apparatus for recording and reading data, it is possible to solve problems concerning data retention, data read speed and signal-to-noise ratio which have been at issue in developing data storage media with the use of conventional scanning probe microscopic techniques.
Abstract:
In order to ensure that an electromagnetic field lens is capable of high-resolution observation using a magnetic field lens without leakage of magnetic flux, there is provided a magnetic field superimposing-type lens 1 for focusing an electron beam onto a sample 3 so as to irradiate the sample 3 is provided with an upper magnetic pole 213 a long way from the sample 3 and a lower side magnetic pole 214 close to the sample 3, with electrical insulation being provided between the upper magnetic pole 213 and the lower magnetic pole 214 by a ferrite insulator 215 provided between the upper magnetic pole 213 and the lower magnetic pole 214 in an integral manner with the magnetic poles so that the upper magnetic pole 213 and the lower magnetic pole 214 may be held at different potentials. There is therefore no leak in flux from between the upper magnetic pole 213 and the lower-magnetic pole 214, the chromatic aberration coefficient Cc can be made small, and high-resolution observation of the sample can be achieved.
Abstract:
Microarea light-emitting diodes, which have no variation in light output power the like due to mode-hopping, are used and changes in properties such as light output and the like due to generated heat are prevented. Pulses having a constant period and a substantially constant power are used, a number of the pulses within a period for forming an image corresponding to one pixel is determined on the basis of image data, and light beams emitted from the microarea light-emitting diodes are modulated by pulse signals including the determined pulses.
Abstract:
An aberration corrector comprises four stages of electrostatic quadrupole elements, two stages of electrostatic quadrupole elements for superimposing a magnetic potential distribution analogous to the electric potential distribution created by the two central ones of the four stages of the electrostatic quadrupole elements on the electric potential distribution, an objective lens, a manual operation portion permitting a user to modify the accelerating voltage or the working distance, a power supply for supplying voltages to the four stages of electrostatic quadrupole elements, a power supply for exciting the two stages of magnetic quadrupole elements, a power supply for the objective lens, and a control portion for controlling the power supplies according to a manual operation or setting performed on the manual operation portion.
Abstract:
A near-field microscope comprising: a probe for scattering a near-field light; light emitting device including a light source for emitting light to a sample or said probe; and light sampling device for sampling and detecting a light that includes information of the sample scattered by said probe, said microscope comprising: control device for spacing said sample or probe from a field of a near-field light generated by said light emission or disposing the sample or probe at a position that is shallow in a field of near-field light, thereby detecting a noise by said light sampling device; inserting said sample or probe deeply into a field of near-field light generated by said light emission, thereby detecting light intensity by said light sampling device; and computing device for computing a measurement result obtained by subtracting a noise from said light intensity.
Abstract:
In the light-receiving element array device according to the present invention, a light-receiving section can be arranged at a position close to an input optical fiber so that the light-receiving element array device can be used as an optical demultiplexer based on the Littrow arrangement. Further the present invention enables suppression of coma aberration and minimization of an optical demultiplexer by shortening a length of the optical system. To achieve the above-described object, a rectangular chip having a light-receiving section with a number of light-receiving elements arrayed in row thereon is sealed in a rectangular package having external leads and the bonding pads on the chip and the bonding terminals of the packages are connected with a bonding wire or the like. This light-receiving element array device has any of the following constructions: (1) in which no bonding pad is provided along one longer edge of the chip in an area around a light-receiving section of the chip, (2) in which no bonding terminal is provided along one longer edge of the package, or (3) in which no external lead is provided along one longer edge of the package, or a combination of the constructions, and the chip is accommodated in the package at a position displaced to one side of the package.