Abstract:
The present invention provides a phosphor, including a constituent having the formula CapSrqMm-AaBb-Ot-Nn:Eur, wherein M selected from the group consisting of beryllium and zinc; A selected from the group consisting of aluminum, gallium, indium, scandium, yttrium, lanthanum, gadolinium and lutetium; B selected from a group consisting of silicon, germanium, tin, titanium, zirconium and hafnium; 0
Abstract:
Described is a micro-fabricated charged particle emission device including a substrate and a plurality of charged particle emission sites formed in the substrate. A path extends between each emission site and a source of liquid metal. Each path is coated with a wetting layer of non-oxidizing metal for wetting the liquid metal. Exemplary non-oxidizing metals that may be used to provide the wetting layer include gold and platinum. The wetting layer is sufficiently thin such that some liquid metal is able to flow to each emission site despite any chemical interaction between the liquid metal and the non-oxidizing metal of the wetting layer.
Abstract:
A large-area and high-luminance deep ultraviolet light source device is provided under circumstances where the scales of existing mercury lamps used as ultraviolet light sources cannot be reduced and light-emitting diodes of 365 nm or less do not reach the practical level. The deep ultraviolet light source device comprises at least an anode substrate having an ultraviolet phosphor thin film doped with rare-earth metal ions such as gadolinium (Gd) ions and containing with aluminum nitride as the host material, a cathode substrate having a field electron emission material thin film, a spacer for holding the anode substrate and the cathode substrate opposite to each other and maintaining the space between the substrates in a vacuum atmosphere, and a voltage circuit for applying an electric field to the space between the anode substrate and the cathode substrate. Light is emitted by injecting electrons from the field electron emission material thin film into the ultraviolet phosphor thin film by applying the electric field to the space between the substrates and maintaining the space between the anode substrate and the cathode substrate as a vacuum channel region.
Abstract:
An inorganic electroluminescence device including a first electrode and a second electrode disposed apart from each other, and a dielectric material layer disposed between the first and second electrodes. The dielectric material layer has a micro-tubular shape, and a light emitting layer is filled in the dielectric material layer.
Abstract:
An anthracene derivative represented by general formula (1) is provided. In the formula, Ar1, Ar3, Ar5, and Ar6 independently represent an aryl group having 6 to 13 carbon atoms, Ar2 and Ar4 independently represent an arylene group having 6 to 13 carbon atoms, and R1 to R8 independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms. Ar1 to Ar6 may independently have a substituent. When Ar1 to Ar6 independently have two or more substituents, the substituents may be bonded to each other to form a ring. When a carbon atom of Ar1 to Ar6 has two substituents, the substituents may be bonded to each other to form a spiro ring.
Abstract:
A carbon nanotube film includes a plurality of successively oriented carbon nanotubes joined end-to-end by Van der Waals attractive force therebetween. The carbon nanotubes define a plurality of first areas and a plurality of second areas. The first areas and the second areas have different densities of carbon nanotubes. A method for manufacturing the same is also provided. A light source using the carbon nanotube film is also provided.
Abstract:
A thermionic electron emission device includes an insulating substrate, and one or more grids located thereon. The one or more grids include(s) a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. Wherein the thermionic electron emitter includes a carbon nanotube film structure.
Abstract:
A liquid crystal display (LCD) apparatus and a method of manufacturing the same include a seal line having two protrusions, one of the protrusions having a liquid crystal (LC) injection hole. Moreover, the LCD apparatus having the seal line constitutes a closed loop. The display apparatus and the manufacturing method thereof increase production yields because the number of apparatus substrates for the display apparatus obtained from a mother substrate is increased by minimizing a distance between two adjacent apparatus substrates on the mother substrate. The method of manufacturing an exemplary LCD apparatus includes a one drop filling method or a vacuum injection method.
Abstract:
Polyfluorene polymers and copolymers having substantial amounts (10-100%) of fluorenes coupled at the 2 and 5 positions of fluorene are useful as active layers in OLED devices where triplet energies >2.10 eV are required.
Abstract:
A light source includes a base, a light-transmissive envelope coupled to the base, a composition disposed within the light-transmissive envelope, and a gas phase contained by the envelope for suppressing vaporization of the composition at operating temperatures greater than about 2000 Kelvin. The composition includes a first region and a second region and operable to suppress or reflect photons having a wavelength greater than about 700 nm and to emit or transmit photons having a wavelength between about 400 nm and about 700 nm.