Abstract:
A method and apparatus for encoding and decoding a data block are disclosed. The data block may be for a physical channel. Further, the data block may be for a shared channel. For data block encoding, a Node-B may calculate cyclic redundancy check (CRC) bits for the data block. The data block may be used to calculate the CRC bits. The Node-B may mask the CRC bits with a wireless transmit/receive unit (WTRU) identity (ID). Further, the Node-B may attached the masked CRC bits to the data block. Using a transmitter, the Node-B may transmit the data block over a physical channel. Further, the Node-B may transmit the data block over a shared channel. A WTRU may receive the data block, including the masked CRC bits. Using the WTRU ID, the WTRU may de-mask the CRC bits. The WTRU may perform a CRC check using the de-masked CRC bits.
Abstract:
A method and apparatus for cooperation in wireless communications. Cooperation is considered among a number of network elements, including at least one wireless transmit-receive unit, at least one relay station, and at least one base station.
Abstract:
A method and system is disclosed for a device to quickly determine if data is being sent to it. If no data is being sent to the device, the device may return to a sleep mode so as to conserve energy. The present invention includes organizing and transmitting, one at a time, all device destination identifiers. If a message listing search indicates that no message is being sent for a device, the device can continue with any other activity that needs servicing, or if no other activity is pending, it may shut down to conserve power until the next wake up period arrives. If the search returns a positive indication, the count value when the identifier is found can be used to determine the location of the pointer to the message.
Abstract:
The transmission and decoding of resource blocks (RBs) transmitted via a multiple-input multiple-output (MIMO) antenna having a plurality of transmit antennas is disclosed. Each RB includes a plurality of resource elements (REs). Each RE is reserved for one of a common reference signal (CRS) associated with one of the transmit antennas, a dedicated reference signal (DRS) including a single beamformed or precoded pilot, a DRS including a composite beamformed or precoded pilot, and a data symbol. Each RB may include a “control type” data symbol that indicates a DRS mode associated with the RB. In one DRS mode, each DRS includes a single beamformed or precoded pilot. In another DRS mode, each DRS includes a composite beamformed or precoded pilot. In yet another DRS mode, single beamformed or precoded pilots, and composite beamformed or precoded pilots, may coexist and be transmitted simultaneously within the same RBs or in different RBs.
Abstract:
A network device or user equipment (UE) may manage the transmission and retransmission of radio link control (RLC) data protocol data units (PDUs). An indication is received that an RLC data PDU was not successfully received by a receiving device. The RLC data PDU, that was not successfully received, is retransmitted, and prioritized over non-retransmitted RLC data PDUs. A number of times that the RLC data PDU was retransmitted is determined.
Abstract:
A method and apparatus that applies medium access control (MAC) transmission opportunity (TXOP) protection for multiple mode operation in a WLAN system. In particular, MAC mechanisms are defined to support multiple mode CTS frames, and multiple mode CF-End frames sent by the AP, each in a format appropriate for the corresponding mode which may also apply to a single mode. MAC mechanisms permit truncation of TXOP duration for releasing the unused portion of the TXOP when no further data for transmission is available. Release of unused protected TXOP is possible for both protected AP transmissions and STA transmissions.
Abstract:
A method and apparatus for processing multiple-input multiple-output (MIMO) transmission are disclosed. A wireless transmit/receive unit (WTRU) receives downlink control information including WTRU-specific MIMO and transport format information and MIMO information for all other WTRUs assigned to the same resource. The WTRU processes received MIMO data based on the downlink control information. The downlink control information may also include transport format information for all other WTRUs assigned to the same RB. The downlink control information may be transmitted via WTRU-specific control signaling. All WTRUs' MIMO and/or transport format information may be transmitted via resource-specific common control signaling. The downlink control signaling format may include at least one of a number of streams for the WTRU, a number of active WTRUs assigned to the same resource, a spatial channel identity for the WTRU, a MIMO mode, a precoding matrix index and a precoding vector index.
Abstract:
A subscriber unit for use in a communication system includes a spread spectrum radio interface, responsive to a rate function signal from a base station, and first and second despreaders. The base station assigns the rate function spread-spectrum message channels and the first despreader recovers and modifies an information signal one of the spread spectrum message channels. The information channel mode is then modified for processing by the second despreader, with the second despreader supporting a different information signal rate. The subscriber unit has a capability of communicating with a dynamically changing a transmission rate of an information signal which includes multiple spread spectrum message channels. The system includes a closed loop power control system for maintaining a minimum system transmit power level for a radio carrier station and the subscriber units, and system capacity management for maintaining a maximum number of active subscriber units for improved system performance.
Abstract:
A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC.
Abstract:
Detecting, avoiding and/or correcting problematic puncturing patterns in parity bit streams used when implementing punctured Turbo codes is achieved without having to avoid desirable code rates. This enables identification/avoidance of regions of relatively poor Turbo code performance. Forward error correction comprising Turbo coding and puncturing achieves a smooth functional relationship between any measure of performance and the effective coding rate resulting from combining the lower rate code generated by the Turbo encoder with puncturing of the parity bits. In one embodiment, methods to correct/avoid degradations due to Turbo coding are implemented by puncturing interactions when two or more stages of rate matching are employed.