Abstract:
Disclosed herein are methods and compositions for producing composite iron pellets comprising an inner core comprising iron ore and a reducing agent comprising a carbonaceous material; and an outer shell comprising unreduced iron ore. The resulting composite iron pellets can be used to produce direct reduced iron (DRI) with improved productivity while reducing gas consumption.
Abstract:
The present disclosures and inventions relate to a method for producing Si-killed steel comprising: a) supplying Al-killed steel ladle furnace slag; and b) adding the Al-killed steel ladle furnace slag to a Si-killed steel process to thereby produce Si-killed steel.
Abstract:
The present invention relates to a process for the preparation of a catalyst system suitable for olefin polymerization wherein the external electron donor is n-propyltriethoxysilane, and a catalyst system obtained or obtainable by said process. The invention also relates to a process for preparing a polyolefin using said catalyst system. The invention further relates to a polyolefin, in particular polyprolyene, obtainable by such a process, and shaped articles manufactured from such a polymer. The polymers produced using the catalyst system exhibit low volatiles and therefore have a reduced environmental and health impact.
Abstract:
Disclosed herein are methods and compositions for producing improved steels comprising injecting iron containing by-products of an iron ore production process into a liquid steel, wherein the iron containing by-products of an iron ore production process further comprise direct reduced iron (DRI) fines. The resulting improved steel exhibits lower nitrogen content than one measured for a substantially identical reference composition produced in the absence of the direct reduced iron fines.
Abstract:
The present disclosures and inventions relate to a catalyst or catalyst composition and the methods of making and using the catalyst or catalyst composition. In one aspect, the present disclosure relates to a catalyst composition that includes a catalyst having the formula CA CB Ox and a catalyst support; a) CA is CoaMnbXd, wherein X comprises Si, Ti, Cu, Zns Pd, or La or a combination thereof; a ranges from 0.8 to 1.2; b ranges from 0.1 to 1; and d ranges from 0 to 0.5; and b) CB is NieCufMghSim, wherein e ranges from about 0.8 to 1.2; f ranges from 0 to 1; h ranges from 0 to 0.5; and m ranges from 0 to 0.5; wherein Ox is determined by the valence requirements of the other elements present, wherein in the catalyst support consists essentially of magnesia, alumina, silica, titanic, carbon, or zeolite, or a combination thereof; and wherein the catalyst composition converts synthesis gas to at least one olefin.
Abstract:
A process for the preparation of a catalyst system for olefin polymerization, including: A) providing said procatalyst obtainable via a process comprising: i) contacting a compound R4zMgX42-z with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product, ii) optionally contacting the solid product obtained in step i) with at least one activating compound selected from an activating electron donor or metal alkoxide compound; iii) contacting the first or second intermediate reaction product, with a halogen-containing Ti-compound and optionally an internal electron donor to obtain the procatalyst; and B) contacting the procatalyst with a co-catalyst and at least diethylaminotriethoxysilane as the external donor. Further disclosed is a catalyst system obtained by the process; a process for preparing a polyolefin by contacting at least one olefin with the catalyst system; a polyolefin obtained thereby; a composition comprising a propylene-ethylene copolymer; a shaped article thereof; and use of polyolefin.
Abstract:
A process for making a shaped part from a polymer selected from polyethylene terephthalate (PET) and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) by using a compacting tool comprising a die having a cavity and a punch having an outer surface. The process comprises the steps of: a) placing particles of the polymer in the cavity of the die heated to a compaction temperature, wherein the polymer has an intrinsic viscosity of at least 0.45 dL/g wherein the particles are a mixture of first particles with a particle size of 0.5-4000 μm and second particles with a particle size of 1000-4000 μm b) pressing the particles in the die cavity at a pressure of at least 3 MPa for 5-15 minutes while maintaining the temperature of the die at the compaction temperature and c) removing the shaped part from the die cavity. When the polymer is PET, the compaction temperature is 235-259° C. When the polymer is PEN, the compaction temperature is 250-275 ° C.
Abstract:
The invention relates to a high pressure polymerisation process for the preparation of the polyethylene wherein the polymerisation process takes place in the presence of a cobalt containing complex. The cobalt containing complex may be a complex according to Formula (I): Formula (I) wherein y1, y2, y3 and y4 may, independently of one another be the same or different, H, (C1C20) alkyl, (C5-C20) cycloalkyl, (C6-C10) aryl radical, phenyl or hydroxy-phenyl.
Abstract:
The present invention relates to an assembly of pipe surrounded by a multilayer oxygen barrier film wherein the multilayer oxygen barrier film comprises, in the following order, a) a layer comprising 60-100 wt % of LLDPE (linear low density polyethylene) and 0-40 wt % of LDPE (low density polyethylene), b) a first tie layer, c) a polar oxygen barrier layer, d) a second tie layer and e) a layer comprising 60-100 wt % of LLDPE and 0-40 wt % of LDPE, preferably wherein the pipe is closer to the layer e) than to the layer a).
Abstract:
The present invention relates to a catalyst for the thermochemical generation of hydrogen from water and/or the thermochemical generation of carbon monoxide from carbon dioxide comprising a solid solution of cerium dioxide and uranium dioxide.