Abstract:
The disclosed subject matter presents a catalyst or catalyst composition as well as the methods of making and using the catalyst or catalyst composition. In one aspect, the disclosed subject matter relates to a catalyst comprising CoMnaSibXcYdOx wherein in X comprises an element from Group 11; Y comprises an element from Group 12; a ranges from 0.8 to 1.2; b ranges from 0.1 to 1; c ranges from 0.01 to 0.05; d ranges from 0.01 to 0.05; x is a number determined by the valency requirements of the other elements present; and wherein the catalyst converts synthesis gas to at least one olefin.
Abstract:
The present disclosures and inventions relate to a catalyst or catalyst composition and the methods of making and using the catalyst or catalyst composition. In one aspect, the present disclosure relates to a catalyst composition that includes a catalyst having the formula CA CB Ox and a catalyst support; a) CA is CoaMnbXd, wherein X comprises Si, Ti, Cu, Zns Pd, or La or a combination thereof; a ranges from 0.8 to 1.2; b ranges from 0.1 to 1; and d ranges from 0 to 0.5; and b) CB is NieCufMghSim, wherein e ranges from about 0.8 to 1.2; f ranges from 0 to 1; h ranges from 0 to 0.5; and m ranges from 0 to 0.5; wherein Ox is determined by the valence requirements of the other elements present, wherein in the catalyst support consists essentially of magnesia, alumina, silica, titanic, carbon, or zeolite, or a combination thereof; and wherein the catalyst composition converts synthesis gas to at least one olefin.
Abstract:
The present disclosures and inventions relate to a catalyst or catalyst composition and the methods of making and using the catalyst or catalyst composition. In one aspect, the present disclosure relates to a catalyst composition that includes a catalyst having the formula CA CB Ox and a catalyst support; a) CA is CoaMnbXd, wherein X comprises Si, Ti, Cu, Zns Pd, or La or a combination thereof; a ranges from 0.8 to 1.2; b ranges from 0.1 to 1; and d ranges from 0 to 0.5; and b) CB is NieCufMghSim, wherein e ranges from about 0.8 to 1.2; f ranges from 0 to 1; h ranges from 0 to 0.5; and m ranges from 0 to 0.5; wherein Ox is determined by the valence requirements of the other elements present, wherein in the catalyst support consists essentially of magnesia, alumina, silica, titanic, carbon, or zeolite, or a combination thereof; and wherein the catalyst composition converts synthesis gas to at least one olefin.