Abstract:
Transmission power relative to a propagation path having a variation in gain is controlled to increase communication channel capacity, and a data rate is controlled in accordance with the variation of the increased communication channel capacity. In order to increase the communication channel capacity, the transmission power is determined so that the sum of noise power (=received noise power/propagation path gain) converted into one at a transmitter and the transmission power becomes constant. As a result, contrary to the background art, the transmission power is controlled to be reduced when the propagation path gain decreases and to be increased when the propagation path gain increases.
Abstract:
In a radio communication apparatus, a MIMO system deciding section of a transmitter unit decides an object MIMO communication system with reference to a CQI value and a measured rate table while an AMC table controlling section selects an object MCS value according to the decided MIMO communication system and CQI value. The AMC table controlling section changes the MCS value step by step according to a transmission count and a result (success/failure) of the communication. If the communication (receiving) is successful or if the transmission count reaches the maximum value, the controlling section updates the mean value of the measured rate table. At this time, based on a value estimated from the combination of the MIMO communication system, the encoding system, and the modulating system that are used currently, the controlling section changes the reference for selecting another combination that are not used currently.
Abstract:
Disclosed is a novel NASH marker for use in a method for detecting NASH or evaluating the severity of NASH, which utilizes at least one factor selected from the group consisting of an IL-1 receptor antagonist, sCD40, HMGB1, sPLA2 group IIA and an sPLA2 activity as the marker. Also disclosed is a method for detecting NASH or evaluating the severity of NASH in a subject, which utilizes the marker.
Abstract:
Power consumption of a communication apparatus having a plurality of operating modes can be accurately determined. A management apparatus 4 manages a communication apparatus 3 having a plurality of operating modes, and includes an obtaining unit 421 that obtains information about power consumption of the communication apparatus 3; a mode identifying unit 422 that identifies an operating mode of the communication apparatus 3; and a power managing unit 424 that determines power consumption in each operating mode of the communication apparatus 3 by associating information about power consumption (signals S21) obtained by the obtaining unit 421 with operating modes (signals S23) identified by the mode identifying unit 422.
Abstract:
A door device for vehicles, comprising a door arranged at a side of a body of a vehicle, the door having two end portions in a horizontal direction of the body. A first connecting member is arranged at the one end portion of the door, a second connecting member is arranged at the other end portion of the body; and a third connecting member arranged at a lower end portion of the door in a height direction of the body. The first, second and third connecting members arranged at the door are connectable with the body. The first and second connecting members have upper ends with these upper ends and the third connecting member arranged to provide a truss structure which connects the door and the body and provide rigidity against stress applied from the body to the door in a state where the door is closed.
Abstract:
A sheet conveying apparatus has a conveyance portion configured to convey a sheet along a conveyance path; a skew-feed correction member positioned in the conveyance path such that a leading edge of the sheet conveyed by the conveyance portion contacts the skew-feed correction member to correct a skew-feed of the sheet; a receiving portion configured to receive information indicative of the width of the conveyed sheet, the width being in a direction orthogonal to a sheet conveyance direction; and a control portion configured to adjust a skew-correction conveyance amount of the conveyance portion applied to correct the skew-feed of the sheet by the skew-feed correction member. The skew-correction conveyance amount is adjusted on information which the receiving portion receives such that the skew-correction conveyance amount is set to be larger for a sheet of smaller width compared to a sheet of greater width.
Abstract:
A radio communication system includes a first radio station for dividing codewords into communication units and transmitting the divided codewords by modulating them in every communication unit, and a second radio station for coupling and decoding signals obtained by demodulating the communication units. The radio stations have common information of first bits, equal to maximum bits per symbol of the communication units, and an encoding type list. The first station modulates and transmits the communication units with a modulation type with second bits. The second radio station receives the communication units modulated by the first radio station, demodulates the communication units with a modulation type with third bits, combines and decodes the demodulated signals with encoding types in the encoding type list, and obtains a result of the decoding, as reception information, by an encoding type in which no error is detected in the result of decoding.
Abstract:
A method for suppressing the peak-to-average power ratio (PAPR) while limiting deterioration in signal characteristics in wireless communication devices utilizing wireless communication methods (OFDM method, MIMO method) for multiplexing and sending multiple signals. A weight calculator unit sets a large weight for transmit signals whose channel quality is poor, relative to the weight of each base component based on the acquired channel quality. A peak detector unit detects the peak from the signal string after unitary conversion, and extracts a distortion component to apply for suppressing the peak. A peak suppression signal generation unit calculates the peak signal from the distortion component and weight of each base component, to add to each base component, and adds the peak suppression signal to each base component prior to unitary transformation.
Abstract:
To suppress the peak of the orthogonal multiplex transmission signal which is small in deterioration of the quality of the reception signal by generating the cancellation waveform in synchronization with the timing of the symbol of the transmission signal. There is provided a peak suppressing method that suppresses peaks of an orthogonally multiplexed signal whose orthogonality is ensured in given time units, the method comprising: a first step of detecting the peaks of the orthogonally multiplexed signal; a second step of generating a peak cancellation waveform based on the detected peaks of the orthogonally multiplexed signal; and a third step of removing the peak of the orthogonally multiplexed signal from the orthogonally multiplexed signal using the generated peak cancellation waveform. The second step comprises generating the peak cancellation waveform in said time units of the orthogonally multiplexed signal.
Abstract:
This invention provides a mobile communication system which expanded the operation limitation of the heretofore adopted mobile communication systems and improved the spectrum efficiency greatly. A data transmission method for use in the mobile communication system of the present invention includes means for channel pluralizing by which to expand the Shannon limit and means for interference reduction by which to expand the interference limit. More specifically, a transmitting module comprises M units of modulators and L units of transmitting antennas, generates L units of signals by multiplying M units of modulated signals by a complex matrix consisting of M×L units of elements, and transmits the L units of signals from the L units of transmitting antennas.