Abstract:
A system and method are disclosed for the precision fabrication of Micro-Electro-Mechanical Systems (MEMS), Nano-Electro-Mechanical Systems (NEMS), Microsytems, Nanosystems, Photonics, 3-D integration, heterogeneous integration, and Nanotechology devices and structures. The disclosed system and method can also be used in any fabrication technology to increase the precision and accuracy of the devices and structures being made compared to conventional means of implementation. A platform holds and moves a substrate to be machined during machining and a plurality of lasers and/or ion beams are provided that are capable of achieving predetermined levels of machining resolution and precision and machining rates for a predetermined application. The plurality of lasers and/or ion beams comprises a plurality of the same type of laser and/or ion beam. Alternatively, a close-loop control system can be used with one laser or ion beam that is controlled and operated by the close-loop control system so as to achieve the predetermined levels of machining resolution and precision and machining rates for the predetermined application.
Abstract:
A differential pressure sensor comprises a membrane arranged over a cavity on a semiconductor substrate. A lid layer is arranged at the top side of the device and comprises an access opening for providing access to the top side of the membrane. A channel extends laterally from the cavity and intersects with a bore. The bore is formed by laser drilling from the bottom side of the substrate and provides access to the bottom side of the membrane. The bore extends all through the substrate and optionally into the lid layer.
Abstract:
A method an apparatus for manufacturing a microfluidic device (10) is disclosed in which a laser is used to remove selected portions of one of the layers that make up the device. The portion of the layer may be removed before the layer is amalgamated with other layers making up the device, or the portion may be removed after the layers have been bonded together. The laser beam used to accomplish removal is a combination of at least two laser beams (3, 4), one of which (3) may be a continuous beam to form a melt of the portion to be removed, the other (4) being pulsed or modulated in some way to periodically induce shockwaves which remove the portion. The laser beams use at least one part (5, 8, 9) of the same alignment system.
Abstract:
A method for manufacturing a microstructure device using a near field scanning optical microscope (NSOM) laser micromachining system. A microstructure device preform, including an existing feature, is provided. The NSOM probe tip is scanned over a portion of the preform selected such that a plurality of scan lines cross the existing feature. Scanned locations of the existing feature in at least two scan lines are determined. The orientation of the existing feature is determined based on the scanned locations and the shape of the existing feature. At least one expected machining location in a subsequent scan line is determined based on the shape and orientation of the existing feature. The micro-machining laser is pulsed as the NSOM probe is scanned through the expected machining location(s) during the subsequent scan lines to form at least one fine feature on the microstructure device preform, thus, completing the microstructure device.
Abstract:
A method and apparatus for dry etching pure Cu and Cu-containing layers (220, 310) for manufacturing integrated circuits. The invention uses a directional beam of O-atoms with high kinetic energy (340) to oxidize the Cu and Cu-containing layers, and etching reagents (370) that react with the oxidized Cu (360) to form volatile Cu-containing etch products (390). The invention allows for low-temperature, anisotropic etching of pure Cu and Cu-containing layers in accordance with a patterned hard mask or photoresist (230, 330).
Abstract:
A method for generating a surface profile of a microstructure. The profile is processed to determine positions of at least two edges and an approximate center point of the profiled surface. Segments of points on the determined profile are fit to a straight line centered at the approximate center point. A standard deviation of the fitted points is measured. The length and position of the segment are varied until a minimum standard deviation is determined and the process is repeated for segments having different lengths. The point is determined from the longest segment having a standard deviation approximately equal to the minimum standard deviation of all of the segment lengths.
Abstract:
The invention relates to a method for manufacturing nanometer-scale apertures, wherein, in an object, in a conventional manner, at least one aperture is provided with a nanometer-scale surface area, after which, by means of an electron beam, energy is supplied to at least the edge of said at least one aperture, such that the surface area of the respective aperture is adjusted, wherein the surface area of the aperture is controlled during adjustment and the supply of energy is regulated on the basis of the surface area change.
Abstract:
A method and apparatus for dry etching pure Cu and Cu-containing layers (220, 310) for manufacturing integrated circuits. The invention uses a directional beam of O-atoms with high kinetic energy (340) to oxidize the Cu and Cu-containing layers, and etching reagents (370) that react with the oxidized Cu (360) to form volatile Cu-containing etch products (390). The invention allows for low-temperature, anisotropic etching of pure Cu and Cu-containing layers in accordance with a patterned hard mask or photoresist (230, 330).
Abstract:
A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.