Abstract:
A method is disclosed for making an optical fiber by drawing a preform whose fabrication involves deposition of a glass on a substrate by means of a chemical reaction between gaseous reagents. According to the disclosed method, accurately controlled amounts of a gaseous reagent are produced by flash evaporating a metered flow of a liquid reagent. The disclosed method is of particular interest for the industrial production of optical fibers.
Abstract:
Method for forming clear vitreous material substantially comprising silica-titania binary which contains up to about 40 mole percent titania without melting the constituents used in forming the material. There is separately prepared a clear organic-solvent-solution of partially hydrolyzed alkoxide of one of the binary members. To this prepared solution is added the other binary member either in the form of alkoxide or a clear organic-solvent solution of partially hydrolyzed alkoxide of the other member. The mixed solutions are reacted and additional water is added as required to complete the hydrolysis of the alkoxide. The resulting product is dried and then heated at a relatively low temperature to evolve residual organic components. The binary vitreous material can be processed into monolithic silica-titania glass bodies, or silica-titania coatings for substrates, or into silica-titania vitreous powder which can be sintered into glass bodies or which can be melted at a lower temperature than normally required to form silica-titania glass.
Abstract:
A method of making glass optical waveguides by the flame hydrolysis technique. Particles of glass soot produced by flame hydrolysis are deposited on the outside surface of a mandrel to form a porous preform. The soot particles closer to the mandrel have a refractive index greater than that of the soot disposed toward the outer surface of the preform. The mandrel is removed and the resultant hollow soot preform is supported in a draw furnace through which a helium-rich gas flows. The preform is heated to a temperature sufficient to cause said soot to consolidate and simultaneously permit an optical waveguide filament to be drawn therefrom.
Abstract:
A method of manufacturing an O-ring type optical waveguide wherein a layer of fused silica is formed on the smooth cylindrical surface of an elongated member of fused silica and thereafter a thin layer of doped fused silica having an index of refraction greater than that of said fused silica is formed over said layer of fused silica. A second layer of fused silica is then formed over the layer of doped fused silica and the composite structure is heated to its drawing temperatures and drawn to reduce the cross sectioned area thereof to form an optical waveguide having a cylindrical layer of higher refractive index interposed between a core and an outer cylindrical layer of lesser refractive index.
Abstract:
A method of depositing a layer comprising SiO.sub.2 on a surface of a substrate at a rate which is temperature independent is disclosed. The method includes combining dichlorosilane (SiH.sub.2 Cl.sub.2) with an oxidizing gas, such as O.sub.2, CO.sub.2, N.sub.2 O, H.sub.2 O, to form SiO.sub.2.
Abstract:
A method of incorporating an additive or dopant oxide in a glass body produced by the flame hydrolysis technique. Particles of the primary glass former are produced by flame hydrolysis and deposited to form a porous body which is impregnated, in part at least, with a dopant which may be dissolved or suspended in a vehicle. The body is then thermally consolidated with the dopant dispersed therein.
Abstract:
OPTICAL WAVEGUIDES INCLUDE A CORE OF DOPED SIO2 AND A CLADDING OF PURE SIO2 OR DOPED SIO2. THE DOPANT, WHICH IS AN OXIDE OF A MULTIVALENT ELEMENT, BECOMES CHEMICALLY REDUCED DURING FABRICATION WHICH USUALLY INCLUDES HEATING THE WAVEGUIDE SO THAT IT CAN BE DRAWN. FOR EXAMPLE, TITANIUM DIOXIDE, A COMMONLY USED DOPANT, HAS TI+4 IONS WHICH ARE REDUCED TO TI+3 IONS DURING THE FABRICATION OF THE WAVEGUIDES. THESE REDUCED IONS INCREASE THE ATTENUATION OF THE WAVEGUIDE. FOR EXAMPLE, REDUCED TITANIUM DIOXIDE IS BROWN. IT ABSORBS LIGHT IN THE BLUE REGION AND THE AMOUNT OF TI+3 IONS IN THE GLASS MUST BE QUITE LOW IN ORDER TO GET THE DESIRED WAVEGUIDE TRANSMISSION PROPERTIES. THE REDUCED MULTIVALENT ELEMENT ION ATTENUATION IS MINIMIZED BY HEAT TREATING THE WAVEGUIDE FIBER AT TEMPERATURES IN THE RANGE OF APPROXIMATELY 800 TO 1,000*C. FOR TIMES OF APPROXIMATELY SIX HOURS OR LESS. THE REDUCED MULTIVALENT ION IS OXIDIZED WITH HYDROXYL IONS DELIBERATELY RETAINED IN THE GLASS AND WHICH SERVE AS THE OXIDIZING AGENT.
Abstract:
A METHOD OF FORMING AN OPTICAL WAVEGUIDE BY FIRST FORMING A COATING OF GLASS ON THE INSIDE WALL OF A GLASS TUBE, THE GLASS TUBE AND THE FIRST COATING BEING OF SUBSTANTIALLY SIMILAR MATERIAL. THEREAFTER, A SECOND COATING OF GLASS IS APPLIED TO THE INSIDE WALL OF THE GLASS TUBE OVER THE FIRST COATING, SAID SECOND COATING HAVING A PRESELECTED DIFFERENT INDEX OF REFRACTION FROM THAT OF THE FIRST COATING. THE GLASS TUBE AND COATING COMBINATION IS THEREAFTER DRAWN TO REDUCE THE CROSS-SECTIONAL AREA AND TO COLLAPSE THE SECOND AND INNER COATING OF GLASS TO FORM A FIBER HAVING A SOLID CROSS-SECTIONAL AREA. THE COLLAPSED INNER COATING FORMS THE FIBER CORE AND THE FIRST COATING FORMS THE CLADDING FOR THE FIBER WHILE THE EXTERIOR GLASS TUBE PROVIDES STRUCTURAL STRENGTH FOR THE FIBER.
Abstract:
TIO2-SIO2 GLASSES CONTAINING 12-20% BY WEIGHT TIO2 ARE DISCLOSED. THESE GLASSES MAY BE HEAT TREATED TO PROVIDE A CONTROLLED LOW OR ZERO THERMAL COEFFICIENT OF EXPANSION OVER THE RANGE OF -200*C TO +700*C.
Abstract:
To obtain a crystallized glass member having a curved shape and provide a method for producing the same. A method for producing a crystallized glass member having a curved shape, including a deformation step for adjusting the temperature of a plate glass to a first temperature zone from higher than [At+40]° C. to [At+146]° C. or lower, where At is the yield point (° C.) of the plate glass and deforming at least part of the plate glass into a curved shape by external force acting on the plate glass while precipitating crystals from the plate glass.